Bending of Beam Lab Report Essay

997 Words Sep 11th, 2013 4 Pages
1. Objective:
The objective of this experiment is to demonstrate the bending of a bean when loaded at the center of its length and examine its deflection when positioned in two different ways, when the flat side of the beam is support and when the thin side is supported. In addition, try to find linear relationship between the load applied and the deflection of the beam and comparing the experimental deflection with the theoretical deflection.
If the load is applied at the mid- length a=b=L/2 then mid span deflection is: δ = PL3/(48EI).
Where P is the applied force, L is the length of beam, E is the modulus of elasticity of aluminum, and I is the moment of Inertia.
For a beam of rectangular cross section, say of width w and
…show more content…
We can see from the data that when load are added along the length of the wood it tended to bend more than when adding weight to it width. We also observed the relationship between load and deformation. If we increase the loads, deformation will also decrease. From this experiment we learned that when when a beam will be placed with the wide side on supports it will show les deflection and is more efficient to use.

5. Source of Error: There are some errors between the theoretical and the experimental deflection. This error might have happened because of the inaccuracy in measuring the length between the beam and the ground, which happens because of not measuring the length perpendicular to the beam itself. Therefore, the reading of the height might be different from time to other, so, the calculation of deflection is different from the theoretical.

6. Conclusion: As mentioned before, with this experiment we concluded that the deflection of a beam is different depending on its position. We also concluded that when the beam is positioned with its thin side on the supports it is able to carry more load than when it is positioned with its flat side on the supports. This is due to the fact the beam’s inertia change as the position changes. When the beam is placed on its flat side its inertia is less than when positioned on its thin

Related Documents