• Shuffle
    Toggle On
    Toggle Off
  • Alphabetize
    Toggle On
    Toggle Off
  • Front First
    Toggle On
    Toggle Off
  • Both Sides
    Toggle On
    Toggle Off
  • Read
    Toggle On
    Toggle Off
Reading...
Front

Card Range To Study

through

image

Play button

image

Play button

image

Progress

1/70

Click to flip

Use LEFT and RIGHT arrow keys to navigate between flashcards;

Use UP and DOWN arrow keys to flip the card;

H to show hint;

A reads text to speech;

70 Cards in this Set

  • Front
  • Back

Distance between points P1: (X1,Y1,Z1) and P2: (X2,Y2,Z2)

sqrt( (X2-X1)^2 + (Y2-Y1)^2 +(Z2-Z1)^2)

Formula for Dot Product

a*b= a1b1+a2b2+a3b3

Angle Between non zero vectors a and b

Cos(Theta)= (a*b) / |a||b|


or


Sin(Theta) = |a x b| / (|a||b|)


Two Vectors are Orthogonal if and only if

a*b=0

Scalar Projection of b onto a

Compab= a*b / |a|

Vector Projection of b onto a

Projab= ((a*b)/ |a|) (a/ |a|)




or ((a*b) a) / |a|^2

Two Non Zero Vectors a and b are parallel if and only if

a x b = 0

Area of parallelogram determined by a and b

length of cross product


a x b

How to find vector orthogonal to both a and b

Cross product of a and b


a x b

vector equation of L

r=r0 + tv

parametric equations of line L

x= x0 + at


y= y0+ bt


z= z0 + ct

symmetric equations of Line L

(x-x0)/a = (y-y0)/b = (z-z0)/c



Line segment from r0 to r1

r(t)= (1-t)r0 + tr1

vector equation of plane

n*(r-r0)=0


or


n*r=n*r0

scalar equation of plane through P0(X0,Y0,Z0) with normal vector n= <a,b,c>

a(x-x0)+b(y-y0)+c(z-z0)=0


or


ax+by+cz+d=0

formula for distance from point P1(X1,Y1,Z1) to plane ax+by+cz+d=0

|ax1+by1+cz1+d|/ sqrt(a^2 + b^2 + c^2)

formula for angle between planes

(n1*n2)/(|n1||n2|)

Formula for Ellipsoid

(x^2 / a^2) + (y^2 / b^2) + (z^2 / c^2) =1


if a=b=c then it is sphere

Formula for Cone

(x^2 / a^2) + (y^2 / b^2) = (z^2 / c^2)

Formula for Elliptic Parabeloid

(x^2 / a^2) + (y^2 / b^2) = z/c

Formula for Hyperbeloid of One Sheet

(x^2 / a^2) + (y^2 / b^2) - (z^2 / c^2) =1

Formula for Hyperbolic Parabeloid

(x^2 / a^2) + (y^2 / b^2)= z/c

Formula for Hyperboloid of Two Sheets

(-x^2 / a^2) - (y^2 / b^2) + (z^2 / c^2) = 1

Parametric Equations for Helix

x= cost


y=sint


z= t



Arc Length Formula 3-Dimensions

Integral from A to B of


sqrt[ (f'(t))^2 + (g'(t))^2 + (h'(t))^2 ]



Curvature of Curve

K(t)= |r'(t) x r"(t)| / |r'(t)|^3

Unit Tangent Vector

T(t) = r'(t) / |r'(t)|

Unit Normal Vector

N(t)= T'(t) / |T'(t)|

Binormal Vector

B(t)= T(t) x N(t)

Formula for speed

ds/dt = |v(t)|= |r'(t)|

Acceleration

a(t)= v'(t)= r"(t)

Velocity

v(t)= r'(t)

Parametric Equations of Trajectory

x= (V0 cos(theta)) t


y= (V0 sin(theta)) t - (1/2)gt^2

Tangential Component of Acceleration

AT= ( r'(t)*r"(t) ) / |r'(t)|

Normal Component of Acceleration

AN = |r'(t) x r"(t)| / |r'(t)|

Equation of tangent plane to surface z= f(x,y) at point P(X0,Y0,Z0)

Z-Z0= Fx(Xo,Yo)(X-Xo)+ Fy(Xo,Yo)(Y-Yo)

Linearization of f at (a,b) and the approximation

f(x,y)= f(a,b) + fx(a,b)(x-a) + fy(a,b)(y-b)

Linearization of f at (a,b,c) and the approximation

f(x,y,z)= f(a,b,c) + fx(a,b,c)(x-a) + fy(a,b,c)(y-b) + fz(a,b,c)(z-c)

Chain Rule for dz/dt

dz/dt= (dz/dx)(dx/dt)+(dz/dy)(dy/dt)

Chain rule for dz/ds

dz/ds= (dz/dx)/(dx/ds)+ (dz/dy)(dy/ds)

Implicit Differentiation

dy/dx = - (df/dx)/(df/dy) = -Fx/Fy

Directional derivative of f(x,y) in direction of u=<a,b>

Du f(x,y)= Fx(x,y) a + Fy(x,y) b




make sure u=<a,b> is actually < a/|u|, b/|u|>

Tangent Plane To Level Surface

Fx(Xo,Yo, Zo)(X-Xo) + Fy(Xo,Yo,Zo)(Y-Yo)+ Fz(Xo,Yo,Zo)(Z-Zo)=0

symmetric equations of tangent planes to level surfaces

(X-Xo)/ (Fx(Xo,Yo,Zo))=


(Y-Yo)/ (Fy(Xo,Yo,Zo))=


(Z-Zo)/ (Fz(Xo,Yo,Zo))

2nd Derivative Test

D= D(a,b)= Fxx(a,b)Fyy(a,b) - [Fxy(a,b)]^2




a) If D>0, and Fxx(a,b)>0, then f(a,b) is local min


b) If D>0, and Fxx(a,b)<0, then f(a,b) is local max


c) If D<0, then f(a,b) is saddle point

Moment about x-axis lamina

Mx= double integral of y p(x,y)dA

Moment about y-axis lamina

My= double integral of x p(x,y)dA

mass of lamina

m= double integral of p(x,y)dA

X coordinate of center of mass of lamina (2 dimensions)

My/m = 1/m * double integral of x p(x,y)dA

Y coordinate of center of mass of lamina (2 Dimensions)

Mx/m = 1/m * double integral of y p(x,y)dA

Moments of Inertia (2 dimensions)

X axis: Ix= double integral of y^2 p(x,y) dA


Y axis : Iy= double integral of x^2 p(x,y) dA


Origin: Io= double integral of (x^2 +y^2)p(x,y)dA

Mass of object (Triple Integral)

m= triple integral of p(x,y,z) dV

moment about yz plane

Myz= triple integral of xp(x,y,z)

moment about xy plane

Mxy: triple integral of zp(x,y,z)

Triple Integrals in Cylindrical Coordinates

x=rcos(theta)


y=rsin(theta)


r^2 = x^2 + y^2


z=z


tan(theta)= y/x


dz= rdzdrd(theta)

Triple Integrals in Spherical coordinates

x=psin(phi)sin(theta)


y=psin(phi)cos(theta)


z=pcos(phi)


p^2 = x^2 +y^2 +z^2


dV= p^2 sin(phi) dp d(theta) d(phi)

Formula For Line Integral

Integral from a to b of


f(x(t),y(t)) * sqrt( (dx/dt)^2 + (dy/dt)^2 )

Formula for Line Integral with respect to x

Integral from a to b of


f(x(t),y(t)) x'(t) dt

Formula for Line Integral with respect to y

Integral from a to b of


f(x(t),y(t)) y'(t) dt

Line Integral of F along C or F*dr

Integral of F *dr


is integral from a to b of


F(r(t))* r'(t)

Integral of Gradient Vector * dr


(Fundamental Theorem for Line Integrals)

f(r(b)- f(r(a))

F is conservative if

DP/DY = DQ/DX

Greens Theorem

Double Integral of


(DQ/DX - DP/DY) dA

Curl F

(DR/DY - DQ/DZ) i + (DP/DZ - DR/DX) j + (DQ/DX -DP/DY) k




or




gradient X F

Div F

DP/DX + DQ/DY +DR/DZ




or




Gradient * F

Surface Area

Double Integral of


Sqrt( 1 + (DZ/DX)^2 + (DZ/DY)^2 ) dA

Parametric Surface Area

A(s)= double integral of |ru X rv|

Surface Integral of F over S

Double integral of f(x,y,z) ds


or


double integral of f(r(u,v)) |ru x rv|dA

Integral of F * dr is equal to

double integral of curl F * dS

1

1