Differences Between Crystal Structures And Crystal Chemistry Of Quartz

Improved Essays
There are both similarities and differences between the crystal structures and crystal chemistry of quartz, α-FePO4 and β-FePO4. One of the observed differences is that when the quartz is present at different temperatures. The α-FePO4 phase when present at low temperatures, tend towards the values obtained for β-FePO4 at high temperature. In addition, this case is true for all α quartz when at low temperature, in that it will tend to the values obtained for its respective β quartz experienced at high temperature. When the temperature of a system approach 980 Kelvin, the Fe-O-P bridging angles subsequently rise and the tetrahedral tilt angles decreases drastically during the α-β phase transition. Another difference lies in the case of thermal …show more content…
Soft constraints were applied to the P-O distances for the α-FePO4 phase in the temperature range between 860 Kelvin and 970 Kelvin and this is essential due to the greatly decreased intensity of a large number of reflections with low d spacing due to the high degree of thermal motion at these temperatures. Crystals, which are grown from the melt, are small and thus twinning is almost inevitable. β-FePO4 has significant change in bond distance and angle, thus resulting in the high degree of dynamic disorder. As shown in the picture below is the mechanism of the symmetry change for the FePO4 polymorphs. The cell parameters and volume of the alpha phase increase markedly and non-linearly as a function of temperature. The volume data were fitted to a cubic polynomial as for the alpha quartz. The expression was obtained for the thermal expansion coefficient: alpha (K inverse) = 2.924 x 10^-5 +2.920x10^-10 (T-300)^2. Thermal expansion is lower than alpha quartz and beta quartz. The principal contribution to the thermal expansion arises from the angular variations manifested by the changes in the two symmetrically independent inter-tetrahedral Fe-O-P bridging angles and the correlated tilt angles. The temperature dependence of the volume strongly follows the behavior of the average θ and δ angles as a function of temperature and there is a preferential expansion along alpha. The c/a ratio decreases from 2.2356 at 294 Kelvin to 2.2069 at 969 Kelvin. The initial decrease of the c/a ratio is in fact greater than that observed for any alpha quartz isotype due to the greater average angular variations in

Related Documents

  • Improved Essays

    Crystal Chemistry Lab

    • 984 Words
    • 4 Pages

    The lattice parameters is a=b=c and the angles α = β = γ ≠90°. As for the range of temperatures from 980K to 1073K, the unit cell is hexagonal for the beta FePO4. The lattice parameter is a=b=/c. Furthermore, the angles α = β = 90° and γ = 120°. By comparing the different ATOMS drawings at the different temperatures, it can be observed that the tilt angles actually decrease as temperature increases.…

    • 984 Words
    • 4 Pages
    Improved Essays
  • Improved Essays

    The instability starts near the interface and causes a sinuous movement to the interface. At higher temperature gradients, the instabilities increase and the movement becomes continuous. When temperature gradients are a sinuous wave was observed [26]. Also, when the concentration at the interface is less than the concentration at the slot the surface tension at the free surface accordingly reduces. This implies that the surface tension is inversely proportional…

    • 899 Words
    • 4 Pages
    Improved Essays
  • Improved Essays

    Fepo4 Temperature

    • 718 Words
    • 3 Pages

    Paragraph 1 The research done by Haines on how the atomic structure of FePO4 varies when temperature increases from 294K to 1073 shows few crystal chemical relationships between SiO2 and FePO4. There is a first order variation of cell parameters and atomic orientations with temperatures lower than 980K and α-phase plays a dominant role over β-phase at high temperature. For the α-phase FePO4, the cell parameters increase with a non-linear trend when temperature increases linearly. The volume of the cell expands with a thermal expansion coefficient of α (K-1 )=2.924x10-5 +2.92x10-10 (T-300)2 . The reasons for the cell expansion are the cell angular variations and tilt angles, which were caused by the variations in Fe-O-P bridging angles as they are not symmetrical.…

    • 718 Words
    • 3 Pages
    Improved Essays
  • Improved Essays

    Feipo4 Reaction Lab Report

    • 1054 Words
    • 5 Pages

    The bridging angles between Fe-O-P bridging angles increase and this tetrahedral tilt angles decreases when there is a transition between the α to β, which also shows an increase in temperature up to 980K. for the quartz type FePO4, it shows an increase in the cell parameters and volume of the α phase. In contrast, it is a non-linearly related as a function of temperature. These is actually a result of the dependence of the angular variations and the tetrahedral tilt angles. When the δ value is greater than 22 degrees and θ is less than 136 degrees, the transition from α to β is not observed.…

    • 1054 Words
    • 5 Pages
    Improved Essays
  • Improved Essays

    Haines Research Paper

    • 792 Words
    • 4 Pages

    We can consider the tetrahedral tilt to cause tetrahedral distortion, expressed by tilt angle δ and its reliance on temperature changes. The cell parameters and volume of FePO4 in α-phase, show much increase, though not linearly with temperature. The main reason of thermal expansion is brought about by the angular variations created from altering both the bridging angles of symmetrically-independent intertetrahedral Fe-O-P and the related tilt angles. As such, it can be said that the reliance of temperature in thermal expansion is actually the angular variations of both intertetrahedral bridging angles and tetrahedral tilt angles, and their dependence on the temperature…

    • 792 Words
    • 4 Pages
    Improved Essays
  • Improved Essays

    Phy-O-Quartz Lab

    • 951 Words
    • 4 Pages

    SYMMETRY WRITING EXERCISE PARAGRAPH I FePO4 is a type of -quartz, and when the temperature is relatively low, FePO4 still has the tetrahedral structure as seen in Figure 1. The Fe-O-P bridging angles are more similar between the FePO4 and -quartz. Change in the cell parameters become more significant between temperatures of 294K and 1073K, and it slowly acquires an octahedral structure as the temperature increases. When temperature reaches 980K, the compound transitions and the tilt angles decrease rapidly at an exponential rate. The thermal expansion coefficient α (K-1) = 2.924 x 10-5 + 2.920 x 10-10 (T-300)2 is below that of α-quartz’s.…

    • 951 Words
    • 4 Pages
    Improved Essays
  • Improved Essays

    The research paper first described the structural evolution of Iron Phosphate, FePO4 from temperature 294K to 1073K, in α phase and in its ß-quartz type. There are both similarities and differences in the crystal chemical relationship between quartz (SiO2) and FePO4. The structural parameters of α-FePO4 at low temperature range skews towards the parameter values for ß-quartz type when it is at high temperatures. Angles between elements Fe, O and P increase whilst tilt angles decrease significantly as changes between the two phases near the temperature of 980K. Distance between Fe and O, and between Si and O in FePO4 and quartz (SiO2) is non linear with temperature in both compounds.…

    • 837 Words
    • 4 Pages
    Improved Essays
  • Improved Essays

    Fe-O-Op3 Experiment

    • 926 Words
    • 4 Pages

    This results from increasing disorder when temperature increases. One slight difference, however, was that the alpha phase of FePO4 had greater angular vibrations as compared to its quartz counterparts, as well as the fact that FePO4 is in itself a transition metal, due to Fe being present. Also, the tilt angle drops at a quicker rate when compared to other quartz variations. When FePO4 hits the beta phase, however, there is no more expansion due to increasing temperatures. This probably shows that there is a vast difference in the mechanisms between the alpha and beta phases, indicating either a structural limitation or a chemical property at high temperatures, in which the beta phase FePO4 is unable to continue to expand with higher temperatures.…

    • 926 Words
    • 4 Pages
    Improved Essays
  • Superior Essays

    Copper Gta Welding

    • 1640 Words
    • 7 Pages

    The increase in ductility is related to the microstructure of the welds at a temperature below 1058 °C. In this temperature range, the amount of liquids among the α-Cu grains is minute, and the composition of the liquids resembles the eutectic of (Cu+Cu2O). Solidification of Cu+Cu2O eutectics at the tip of cracking hinders the propagation of crack between adjacent α-Cu grains, and in some degree leads to the increase of strength. Thus, the strength of the welds increases from 10.3 Mpa at 1058 °C to 12.2 Mpa at 1053 °C. At 1020 °C, which is close to the lower limit of the welds’ S-L range, the ductility of the welds increases to 0.00493, which is very close to the Δε (0.00508) during welding.…

    • 1640 Words
    • 7 Pages
    Superior Essays
  • Improved Essays

    Paragraph 1 (300 - 500 words) Compare and contrast the crystal structures and crystal chemistry of quartz, α-FePO4 and β-FePO4 To compare quartz, α-FePO4 and β-FePO4, it is essential to look at their crystal structures and crystal chemistry. This can be done by observing their three-dimensional structures as well as their reactions to various degrees of temperature. This particular research takes a look at the structure of FePO4 between temperatures of 294K to 1073K. At lower temperatures, FePO4 takes on its α-phase structure, which is tetrahedral. α-FePO4 then gradually transitions as the temperature increases to β-FePO4 in terms of structure.…

    • 895 Words
    • 4 Pages
    Improved Essays