• Shuffle
Toggle On
Toggle Off
• Alphabetize
Toggle On
Toggle Off
• Front First
Toggle On
Toggle Off
• Both Sides
Toggle On
Toggle Off
Toggle On
Toggle Off
Front

### How to study your flashcards.

Right/Left arrow keys: Navigate between flashcards.right arrow keyleft arrow key

Up/Down arrow keys: Flip the card between the front and back.down keyup key

H key: Show hint (3rd side).h key

A key: Read text to speech.a key

Play button

Play button

Progress

1/15

Click to flip

### 15 Cards in this Set

• Front
• Back
 reciprocal identities (3) csc x= (1/sin x) sec x=(1/cos x) cot x=(1/tan x) Quotient identities (2) tan x= sin x/cos x Pythagorean identities (3) sin^2 x+ cos^2 x = 1 tan^2 x+ 1= sec^2 x cot^2 x+ 1=scs^2 x Even/odd identities (6) sin -x= -sin x cos -x= cos x tan -x= -tan x csc -x= -csc x sec -x= sec x cot -x= -cot x cofunction Identites (3) sin x= cos (90degrees -x) tan x= cot(90degrees -x) sec x= csc(90 degrees -x) sum/difference formulas (6) cos(A + B)=cosAcosB-sinAsinB cos (A -B)=cosAcosB+sinAsinB sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB tan(A+B)= tanA+tanB/(1-tanAtanB) tan(A-B)=tanA-tanB/(1+tanAtanB) double angle formulas(5) sin(2x)=2sinxcosx cos(2x)=cos^2 x- sin^2 x cos(2x)=1-2sin^2 x cos(2x)=2cos^2 x -1 tan(2x)=2tanx/(1-tan^2 x) half-angle formulas (3) sin (x/2) = +- sq. rt.(1-cosx/2) cos(x/2)= +- sq. rt.(1+cosx/2) tan(x/2)= +- sq. rt.(1-cosx/(1+cosx)) identity an equation that is true for all allowable values of x. (I think?) Principal values of y=sin^-1(x) -pi/2<=y<=pi/2 (<=means 'less than or equal to') principal values of y=cos^-1(x) 0<=y<=pi (<= means 'less than or equal to') principal values of y=tan^-1(x) -pi/2