• Shuffle
    Toggle On
    Toggle Off
  • Alphabetize
    Toggle On
    Toggle Off
  • Front First
    Toggle On
    Toggle Off
  • Both Sides
    Toggle On
    Toggle Off
  • Read
    Toggle On
    Toggle Off
Reading...
Front

How to study your flashcards.

Right/Left arrow keys: Navigate between flashcards.right arrow keyleft arrow key

Up/Down arrow keys: Flip the card between the front and back.down keyup key

H key: Show hint (3rd side).h key

A key: Read text to speech.a key

image

Play button

image

Play button

image

Progress

1/15

Click to flip

15 Cards in this Set

  • Front
  • Back
reciprocal identities (3)
csc x= (1/sin x)
sec x=(1/cos x)
cot x=(1/tan x)
Quotient identities (2)
tan x= sin x/cos x
Pythagorean identities (3)
sin^2 x+ cos^2 x = 1
tan^2 x+ 1= sec^2 x
cot^2 x+ 1=scs^2 x
Even/odd identities (6)
sin -x= -sin x
cos -x= cos x
tan -x= -tan x
csc -x= -csc x
sec -x= sec x
cot -x= -cot x
cofunction Identites (3)
sin x= cos (90degrees -x)
tan x= cot(90degrees -x)
sec x= csc(90 degrees -x)
sum/difference formulas (6)
cos(A + B)=cosAcosB-sinAsinB
cos (A -B)=cosAcosB+sinAsinB
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cosAsinB
tan(A+B)= tanA+tanB/(1-tanAtanB)
tan(A-B)=tanA-tanB/(1+tanAtanB)
double angle formulas(5)
sin(2x)=2sinxcosx
cos(2x)=cos^2 x- sin^2 x
cos(2x)=1-2sin^2 x
cos(2x)=2cos^2 x -1
tan(2x)=2tanx/(1-tan^2 x)
half-angle formulas (3)
sin (x/2) = +- sq. rt.(1-cosx/2)
cos(x/2)= +- sq. rt.(1+cosx/2)
tan(x/2)= +- sq. rt.(1-cosx/(1+cosx))
identity
an equation that is true for all allowable values of x. (I think?)
Principal values of y=sin^-1(x)
-pi/2<=y<=pi/2
(<=means 'less than or equal to')
principal values of y=cos^-1(x)
0<=y<=pi
(<= means 'less than or equal to')
principal values of y=tan^-1(x)
-pi/2<y<pi/2
principal values of y=csc^-1(x)
-pi/2<=y<=pi/2, y does not =0
(<= means 'less than or equal to')
principal values of y=sec^-1(x)
0<=y<=pi, y does not= pi/2
(<= means 'less than or equal to')
principal values of y=cot^-1(x)
0<y<pi