• Shuffle
    Toggle On
    Toggle Off
  • Alphabetize
    Toggle On
    Toggle Off
  • Front First
    Toggle On
    Toggle Off
  • Both Sides
    Toggle On
    Toggle Off
  • Read
    Toggle On
    Toggle Off
Reading...
Front

Card Range To Study

through

image

Play button

image

Play button

image

Progress

1/34

Click to flip

Use LEFT and RIGHT arrow keys to navigate between flashcards;

Use UP and DOWN arrow keys to flip the card;

H to show hint;

A reads text to speech;

34 Cards in this Set

  • Front
  • Back

Kinematics Equations

S=Distance (m)
U=Initial Velocity (ms^-1)
V=Final Velocity 
A=Acceleration (ms^-2)
T=Time (s)

S=Distance (m)


U=Initial Velocity (ms^-1)


V=Final Velocity


A=Acceleration (ms^-2)


T=Time (s)

Equation for weight

W=mg


F=mg




M=Mass (Kg)


g=Gravitational field strength (ms^-1)


W/F=Force/ Weight (N)

Newton's second law

F=ma




F=Force (N)


M=Mass (Kg)


a=Acceleration (ms^-2)

Moments equation

Moment=Fx




F=Force (N)


x=Distance from pivot (m)

Work done equation

W=Fs




W=Work done (J)


F=Force (N)


s=Distance (m)

Kinetic Energy

Ek=1/2 mv^2




Ek=Kinetic energy (J)


m=Mass (Kg)


V=Velocity (ms^-1)

Gravitational Potential Energy

Eg=mgh




Eg=Gravitational potential energy (J)


m=Mass (Kg)


g=Gravitational field strength (ms^-1)


h=Height (m)

Power (non circuit)

P=E/t P=W/t




P=Power (w)


E/W=Energy/ Work done (J)


t=Time (s)

Potential difference

V=W / Q




V=Potential difference (V)


W=Work done (J)


Q=Charge (C)



Resistance


(ohm's Law)

R=V / I




R=Resistance (Ω)


V=Potential Difference (V)


I=Current (A)

Current equation

I=Q / t




I=Current (A)


Q=Charge (C)


t=Time (s)

Resistivity

R=pl / A




R=Resistance (Ω)


p=Resistivity (Ωm)


l=Length (m)


A=Cross section (m^2)

Current (drift velocity)

I=nqvA




I=Current (A)


n=Density of charge carriers (m^-3)


q=Charge on carrier (C)


V=Drift velocity (ms^-1)


A=Area of cross section (m^2)

Power (circuit)

P=VI




P=Power (w)


V=potential difference (V)


I=Current (A)

Density

p=m/v




p=Density (KgM^-3)


m=Mass (Kg)


v=Volume (m^3)

Stokes' Law

F=6πrηv




F=Frictional force/Drag (N)


r=Radius (m)


η=Viscosity (mPa s)


v=Velocity (ms^-1)

Hooke's law

F=kx




F=Force (N)


k=Spring constant (Nm^-1)


x=Extension (m)

Pressure

p=F/A




p=Pressure (Pa)


F=Force (N)


A=Area (m^2)

Stress

δ = F / A




δ=Stress (Pa)


F=Force (N)


A=Area (m^-2)

Strain

ε = Δx / x




ε=Strain


Δx=Change in length (m)


x=Original length (m)



Young modulus

E = Stress/Strain




E=Young modulus (Pa)

Elastic energy

E = 1/2 FΔx




E=Elastic energy (J)


F=Force (N)


Δx=Change in length (m)

Wave speed

v=fλ




v=Velocity (ms^-1)


f=Frequency (Hz)


λ=Wavelength (m)

Speed of a transverse wave on a string

V = (T / μ)^1/2




V=Velocity (ms^-1)


T=Tension (N)


μ=mass/unit length

Intensity of radiation

I = P / A




I=Intensity (Wm^-2)


P=Power (W)


A=Area (m^-2)

Power of a lens

P = 1/f




P=Power (D)


f=Focal point (m)




P = P1 + P2 + P3 +...

Thin lens equation

1/f = 1/u + 1/v




f=Focal point (m)


u=image distance (m)


v=object distance (m)

Magnification

= Image height / Object height

Diffraction grating

nλ = dsinx




n=Order


λ=Wavelength (m)


d=Distance between grating (1/period)


x=Angle between beam and n

Refractive index

n1sinx1 = n2sinx2




n1=Refractive index 1


x1=Incidence angle


n2=Refractive index 2


x2=Reflection angle

Critical angle

sinC = 1/n




c=Critical angle


n=Refractive index

Photon model

E = hf




E=Energy


h=Planck's constant


f=Frequency (Hz)

Einstein's photoelectric equation

hf = Φ + Ek




Ek=Kinetic energy (J)


Φ=Threshold frequency (Hz)

De Broglie waveform

λ = h / p




λ = Wavelength


h=Planck's Constant


p=Momentum