• Shuffle
    Toggle On
    Toggle Off
  • Alphabetize
    Toggle On
    Toggle Off
  • Front First
    Toggle On
    Toggle Off
  • Both Sides
    Toggle On
    Toggle Off
  • Read
    Toggle On
    Toggle Off
Reading...
Front

Card Range To Study

through

image

Play button

image

Play button

image

Progress

1/154

Click to flip

Use LEFT and RIGHT arrow keys to navigate between flashcards;

Use UP and DOWN arrow keys to flip the card;

H to show hint;

A reads text to speech;

154 Cards in this Set

  • Front
  • Back
Which of the following receptor subtypes does NOT act as an autoreceptor?
a. 5-HT1D
b. D1 dopamine
c. Alpha-2
d. M2 muscarinic
e. GABA-B
b. D1 dopamine
Which of the following is true about GABA?
a. There is a selective loss of GABA neurons in the substantia nigra of patients with Huntington’s chorea.
b. It is thought that GABA agonists help relieve the symptoms of anxiety because GABA neurons increase both locus ceruleus and amygdala activity.
c. GABA receptors only inhibit action potentials of postsynaptic cells if the GABA-B receptor subtype is involved.
d. GABA receptors can form heterodimers which can activate different G-protein coupled second messenger systems.
e. GABA is completely removed from the synapse via a sodium dependent transporter located on the glial cells.
d. GABA receptors can form heterodimers which can activate different G-protein coupled second messenger systems.
Match the area with the description.
Executive center of the brain
a. Prefrontal cortex
b. Hypothalamus
c. Thalamus
d. Occipital cortex
e. Frontal cortex
a. Prefrontal cortex
Match the area with the description.
Relay center
a. Corpus callosum
b. Hypothalamus
c. Thalamus
d. Occipital cortex
e. Frontal cortex
c. Thalamus
Match each phrase with a neurotransmitter.
Overactivity causes resting tremor in Parkinson’s disease.
a. Norepinephrine
b. Dopamine
c. Acetylcholine
d. Serotonin
e. Glutamate
c. Acetylcholine
Match each phrase with a neurotransmitter.
There is a selective loss of these neurons in patients with Parkinson’s disease.
a. Norepinephrine
b. Dopamine
c. Acetylcholine
d. Serotonin
e. Glutamate
b. Dopamine
Match each phrase with a neurotransmitter.
Agonists for its receptors cause excitotoxicity.
a. Norepinephrine
b. Dopamine
c. Acetylcholine
d. Serotonin
e. Glutamate
e. Glutamate
Match each phrase with a neurotransmitter.
Inhibits prolactin release from the anterior pituitary gland.
a. Norepinephrine
b. Dopamine
c. Acetylcholine
d. Serotonin
e. Glutamate
b. Dopamine
Match each phrase with a neurotransmitter.
Overactivity of this neurotransmitter is implicated in drug addiction.
a. Norepinephrine
b. Dopamine
c. Acetylcholine
d. Serotonin
e. Glutamate
b. Dopamine
Match each phrase with a neurotransmitter.
Overactivity of this neurotransmitter is implicated in epilepsy.
a. Norepinephrine
b. Dopamine
c. Acetylcholine
d. Serotonin
e. Glutamate
e. Glutamate
Match each phrase with a neurotransmitter.
Cell bodies project from substantia nigra to caudate nucleus.
a. Norepinephrine
b. Dopamine
c. Acetylcholine
d. Serotonin
e. Glutamate
b. Dopamine
Match each phrase with a neurotransmitter.
Cell bodies project from locus ceruleus to cortex.
a. Norepinephrine
b. Dopamine
c. Acetylcholine
d. Serotonin
e. Glutamate
a. Norepinephrine
Match each phrase with a neurotransmitter.
Cell bodies project from raphe nucleus to spinal cord.
a. Norepinephrine
b. Dopamine
c. Acetylcholine
d. Serotonin
e. Glutamate
d. Serotonin
Match each phrase with a neurotransmitter.
Cell bodies project from septal nucleus to hippocampus.
a. Norepinephrine
b. Dopamine
c. Acetylcholine
d. Serotonin
e. Glutamate
c. Acetylcholine
Match each phrase with a neurotransmitter.
Cell bodies project from cortex to caudate and putamen.
a. Norepinephrine
b. Dopamine
c. Acetylcholine
d. Serotonin
e. Glutamate
e. Glutamate
Match each phrase with a neurotransmitter.
The rate-limiting step for its synthesis is a Na-dependent transporter.
a. Norepinephrine
b. Dopamine
c. Acetylcholine
d. Serotonin
e. Glutamate
c. Acetylcholine
Match each phrase with a neurotransmitter.
The rate-limiting step for its synthesis is the dietary levels of the precursor molecule.
a. Norepinephrine
b. Dopamine
c. Acetylcholine
d. Serotonin
e. Glutamate
d. Serotonin
Match each phrase with a neurotransmitter.
Shares almost the same synthetic pathway as dopamine.
a. Norepinephrine
b. Dopamine
c. Acetylcholine
d. Serotonin
e. Glutamate
a. Norepinephrine
Match the precursor with the description.
Alpha neo-endorphin is made from this (these) polypeptide(s)
a. POMC
b. proenkephalin
c. prodynorphin
d. Both POMC and proenkephalin
e. Both prodynorphin and proenkephalin
c. prodynorphin
Match the precursor with the description.
Met-enkephalin is made from this (these) polypeptide(s)
a. POMC
b. proenkephalin
c. prodynorphin
d. Both POMC and proenkephalin
e. Both prodynorphin and proenkephalin
b. proenkephalin
Match the precursor with the description.
Leu-enkephalin is made from this (these) polypeptide(s)
a. POMC
b. proenkephalin
c. prodynorphin
d. Both POMC and proenkephalin
e. Both prodynorphin and proenkephalin
b. proenkephalin
Match the precursor with the description.
Beta-endorphin is made from this (these) polypeptide(s)
a. POMC
b. proenkephalin
c. prodynorphin
d. Both POMC and proenkephalin
e. Both prodynorphin and proenkephalin
a. POMC
Match the precursor with the description.
Cell bodies containing this polypeptide project from arcuate nucleus to periaqueductal gray
a. POMC
b. proenkephalin
c. prodynorphin
d. Both POMC and proenkephalin
e. Both prodynorphin and proenkephalin
a. POMC
Match the precursor with the description.
Small interneurons containing this polypeptide are present in the dorsal spinal cord.
a. POMC
b. proenkephalin
c. prodynorphin
d. Both POMC and proenkephalin
e. Both prodynorphin and proenkephalin
b. proenkephalin
Match the precursor with the description.
Small interneurons containing this polypeptide are present in the ventral spinal cord.
a. POMC
b. proenkephalin
c. prodynorphin
d. Both POMC and proenkephalin
e. Both prodynorphin and proenkephalin
c. prodynorphin
Match the following receptor with its second messenger system.
D5
a. Activate Gi
b. Activate Gs
c. Activate Gq
d. Directly open a cation channel
e. Directly open an anion channel
b. Activate Gs
Match the following receptor with its second messenger system.
D4
a. Activate Gi
b. Activate Gs
c. Activate Gq
d. Directly open a cation channel
e. Directly open an anion channel
a. Activate Gi
Match the following receptor with its second messenger system.
kainate
a. Activate Gi
b. Activate Gs
c. Activate Gq
d. Directly open a cation channel
e. Directly open an anion channel
d. Directly open a cation channel
Match the following receptor with its second messenger system.
Nicotinic
a. Activate Gi
b. Activate Gs
c. Activate Gq
d. Directly open a cation channel
e. Directly open an anion channel
d. Directly open a cation channel
Match the following receptor with its second messenger system.
5-HT2A
a. Activate Gi
b. Activate Gs
c. Activate Gq
d. Directly open a cation channel
e. Directly open an anion channel
c. Activate Gq
Match the following receptor with its second messenger system.
5-HT1D
a. Activate Gi
b. Activate Gs
c. Activate Gq
d. Directly open a cation channel
e. Directly open an anion channel
a. Activate Gi
Match the following receptor with its second messenger system.
5-HT3
a. Activate Gi
b. Activate Gs
c. Activate Gq
d. Directly open a cation channel
e. Directly open an anion channel
d. Directly open a cation channel
Match the following receptor with its second messenger system.
M1
a. Activate Gi
b. Activate Gs
c. Activate Gq
d. Directly open a cation channel
e. Directly open an anion channel
c. Activate Gq
Match the following receptor with its second messenger system.
M2
a. Activate Gi
b. Activate Gs
c. Activate Gq
d. Directly open a cation channel
e. Directly open an anion channel
a. Activate Gi
Match the following receptor with its second messenger system.
Alpha-1
a. Activate Gi
b. Activate Gs
c. Activate Gq
d. Directly open a cation channel
e. Directly open an anion channel
c. Activate Gq
Match the following receptor with its second messenger system.
Alpha-2
a. Activate Gi
b. Activate Gs
c. Activate Gq
d. Directly open a cation channel
e. Directly open an anion channel
a. Activate Gi
Match the following receptor with its second messenger system.
Beta-1
a. Activate Gi
b. Activate Gs
c. Activate Gq
d. Directly open a cation channel
e. Directly open an anion channel
b. Activate Gs
Match the following receptor with its second messenger system.
GABA-A
a. Activate Gi
b. Activate Gs
c. Activate Gq
d. Directly open a cation channel
e. Directly open an anion channel
e. Directly open an anion channel
Match the following receptor with its second messenger system.
GABA-B
a. Activate Gi
b. Activate Gs
c. Activate Gq
d. Directly open a cation channel
e. Directly open an anion channel
a. Activate Gi
Match the following receptor with its second messenger system.
mu
a. Activate Gi
b. Activate Gs
c. Activate Gq
d. Directly open a cation channel
e. Directly open an anion channel
a. Activate Gi
High affinity reuptake pumps are:
a. calcium dependent
b. sodium dependent
c. temperature dependent
d. voltage dependent
e. both b and d are true
b. sodium dependent
Which of the following receptor subtypes does NOT act as an autoreceptor?
a. 5-HT1D
b. D1 dopamine
c. Alpha-2
d. M2 muscarinic
e. GABA-B
b. D1 dopamine
If intact working norepinephrine pathways in the brain are necessary for transmitting "good mood" thoughts, then which of the following actions of a new drug would cause an increase in mood?
a. inhibiting dopamine beta hydroxylase activity
b. increasing norepinephine transporter activity
c. increasing the number of presynaptic alpha-2 receptors
d. increasing the number of postsynaptic beta receptors
e. all of the above
b. increasing norepinephine transporter activity
Endogenous opoid peptides generally have inhibitory cellular effects because they can:
a. inhibit potassium conductance during an action potential thereby inhibiting release of neurotransmitter
b. increase calcium ion concentrations intracellularly thereby causing hyperpolarization
c. inhibit cyclic AMP formation via an interaction with Gi
d. increase sodium ion concentrations extracellularly by opening sodium channels
e. all of the above
c. inhibit cyclic AMP formation via an interaction with Gi
Which of the following are true about agents that increase dopamine D2-like receptor activities?
a. they would worsen the symptoms of Parkinson's disease
b. they are useful as antiemetic agents
c. chronic treatment with them could cause male breast development and lactation
d. they might worsen the symptoms of schizophrenia
e. all of the above
d. they might worsen the symptoms of schizophrenia
Which of the following are true about GABA?
a. there is a selective loss of GABA neurons in the striatum of patients with Huntington's chorea
b. It is thought that GABA agonists help relieve the symptoms of anxiety because GABA inhibits both locus cereleus and amygdala activity
c. GABA receptors always inhibit action potentials of postsynaptic cells regardless of which receptor subtype of involved
d. GABA-B receptors can form heterodimers which can activate different G-protein coupled second messenger systems
e. all of the above
e. all of the above
Which of the following pairings of serotonin receptor subtypes are thought to be involved with particular disease states is not correct?
a. anxiety with 5HT-1A receptors
b. psychosis with 5HT-2 receptors
c. nausea with 5HT-3 receptors
d. migraine with 5HT-1D receptors
e. hallucinations with 5HT-7 receptors
e. hallucinations with 5HT-7 receptors
Which of the following are true about NMDA-selective glutamate receptors?
a. agents that activate these receptors may increase memory formation and make you smarter
b. chronic activation of these receptors could cause loss of neurons due to excitotoxicity
c. activation of these receptors may make you have a seizure
d. drugs that block these receptors may be useful therapeutic agents for decreasing brain damage in stroke patients
e. all of the above
e. all of the above
Which of the following is/are true about acetylcholine (ACh)?
a. there is a loss of ACh neurons in the brain of patients with Alzheimer's disease
b. nicotinic ACh receptors generally cause excitation of postsynaptic cells
c. short acetylcholine neurons are localized in the striatum and are thought to be the cause of resting tremor in Parkinson's disease
d. cholinergic neurons project from the basal nucleus throughout the cortex
e. all of the above are true
e. all of the above are true
Match the area with the description
Primary visual processing area
a. Temporal cortex
b. Occipital cortex
c. Hypothalamus
d. Parietal cortex
e. Frontal cortex
f. Substancia nigra
g. Putamen
h. Raphe nuclei
i. Globus pallidus
j. Locus ceruleus
b. Occipital cortex
Match the area with the description
Primary motor processing area
a. Temporal cortex
b. Occipital cortex
c. Hypothalamus
d. Parietal cortex
e. Frontal cortex
f. Substancia nigra
g. Putamen
h. Raphe nuclei
i. Globus pallidus
j. Locus ceruleus
e. Frontal cortex
Match the area with the description
Primary sensory (tactile) processing area
a. Temporal cortex
b. Occipital cortex
c. Hypothalamus
d. Parietal cortex
e. Frontal cortex
f. Substancia nigra
g. Putamen
h. Raphe nuclei
i. Globus pallidus
j. Locus ceruleus
d. Parietal cortex
Match the area with the description
Primary auditory processing area
a. Temporal cortex
b. Occipital cortex
c. Hypothalamus
d. Parietal cortex
e. Frontal cortex
f. Substancia nigra
g. Putamen
h. Raphe nuclei
i. Globus pallidus
j. Locus ceruleus
a. Temporal cortex
Match the area with the description
Stimulates caudate nucleus
a. Primary and accessory motor cortex
b. Occipital cortex
c. Hypothalamus
d. Parietal cortex
e. Frontal cortex
f. Substancia nigra
g. Putamen
h. Raphe nuclei
i. Globus pallidus
j. Locus ceruleus
a. Primary and accessory motor cortex
Match the area with the description
The "brakes" of the basal ganglia
a. Temporal cortex
b. Occipital cortex
c. Hypothalamus
d. Parietal cortex
e. Frontal cortex
f. Substancia nigra
g. Putamen
h. Raphe nuclei
i. Globus pallidus
j. Locus ceruleus
g. Putamen
Match the area with the description
Endocrine center
a. Temporal cortex
b. Occipital cortex
c. Hypothalamus
d. Parietal cortex
e. Frontal cortex
f. Substancia nigra
g. Putamen
h. Raphe nuclei
i. Globus pallidus
j. Locus ceruleus
c. Hypothalamus
Match the area with the description
Basal ganglia afferent region
a. Temporal cortex
b. Occipital cortex
c. Hypothalamus
d. Parietal cortex
e. Frontal cortex
f. Substancia nigra
g. Putamen
h. Raphe nuclei
i. Globus pallidus
j. Locus ceruleus
g. Putamen
Match the area with the description
Basal ganglia efferent region
a. Temporal cortex
b. Occipital cortex
c. Hypothalamus
d. Parietal cortex
e. Frontal cortex
f. Substancia nigra
g. Putamen
h. Raphe nuclei
i. Globus pallidus
j. Locus ceruleus
i. Globus pallidus
Match the area with the description
Stimulatory center of the reticular activating system
a. Temporal cortex
b. Occipital cortex
c. Hypothalamus
d. Parietal cortex
e. Frontal cortex
f. Substancia nigra
g. Putamen
h. Raphe nuclei
i. Globus pallidus
j. Locus ceruleus
j. Locus ceruleus
Match the area with the description
Inhibitory center of the reticular activating system
a. Temporal cortex
b. Occipital cortex
c. Hypothalamus
d. Parietal cortex
e. Frontal cortex
f. Substancia nigra
g. Putamen
h. Raphe nuclei
i. Globus pallidus
j. Locus ceruleus
h. Raphe nuclei
Match the area with the description
Inhibits caudate nuclei
a. Temporal cortex
b. Occipital cortex
c. Hypothalamus
d. Parietal cortex
e. Frontal cortex
f. Substancia nigra
g. Putamen
h. Raphe nuclei
i. Globus pallidus
j. Locus ceruleus
f. Substancia nigra
Match each phrase with a neurotransmitter.
Overactivity is implicated in Huntington's chorea
a. Dynorphin
b. Met-enkephalin
c. Beta-endorphin
d. Acetylcholine
e. Norepinephrine
f. Dopamine
g. GABA
h. Serotonin
i. Glutamate
f. Dopamine
Match each phrase with a neurotransmitter.
Overactivity is implicated in drug addiction.
a. Dynorphin
b. Met-enkephalin
c. Beta-endorphin
d. Acetylcholine
e. Norepinephrine
f. Dopamine
g. GABA
h. Serotonin
i. Glutamate
f. Dopamine
Match each phrase with a neurotransmitter.
Overactivity is implicated in epilepsy
a. Dynorphin
b. Met-enkephalin
c. Beta-endorphin
d. Acetylcholine
e. Norepinephrine
f. Dopamine
g. GABA
h. Serotonin
i. Glutamate
i. Glutamate
Match each phrase with a neurotransmitter.
Underactivity is implicated in epilepsy
a. Dynorphin
b. Met-enkephalin
c. Beta-endorphin
d. Acetylcholine
e. Norepinephrine
f. Dopamine
g. GABA
h. Serotonin
i. Glutamate
g. GABA
Match each phrase with a neurotransmitter.
Cell bodies project from ventral tegmental area to nucleus accumbens
a. Dynorphin
b. Met-enkephalin
c. Beta-endorphin
d. Acetylcholine
e. Norepinephrine
f. Dopamine
g. GABA
h. Serotonin
i. Glutamate
f. Dopamine
Match each phrase with a neurotransmitter.
Cell bodies project from locus cereleus to cortex
a. Dynorphin
b. Met-enkephalin
c. Beta-endorphin
d. Acetylcholine
e. Norepinephrine
f. Dopamine
g. GABA
h. Serotonin
i. Glutamate
e. Norepinephrine
Match each phrase with a neurotransmitter.
Cell bodies project from raphe nucleus to spinal cord
a. Dynorphin
b. Met-enkephalin
c. Beta-endorphin
d. Acetylcholine
e. Norepinephrine
f. Dopamine
g. GABA
h. Serotonin
i. Glutamate
h. Serotonin
Match each phrase with a neurotransmitter.
Cell bodies project from arcuate nucleus to periaqueductal gray.
a. Dynorphin
b. Met-enkephalin
c. Beta-endorphin
d. Acetylcholine
e. Norepinephrine
f. Dopamine
g. GABA
h. Serotonin
i. Glutamate
c. Beta-endorphin
Match each phrase with a neurotransmitter.
Cell bodies project from cortex to caudate and putamen
a. Dynorphin
b. Met-enkephalin
c. Beta-endorphin
d. Acetylcholine
e. Norepinephrine
f. Dopamine
g. GABA
h. Serotonin
i. Glutamate
i. Glutamate
Match each phrase with a neurotransmitter.
Small interneurons are present in the dosal spinal cord
a. Dynorphin
b. Met-enkephalin
c. Beta-endorphin
d. Acetylcholine
e. Norepinephrine
f. Dopamine
g. GABA
h. Serotonin
i. Glutamate
b. Met-enkephalin
Match each phrase with a neurotransmitter.
Small interneurons are present in the ventral spinal cord
a. Dynorphin
b. Met-enkephalin
c. Beta-endorphin
d. Acetylcholine
e. Norepinephrine
f. Dopamine
g. GABA
h. Serotonin
i. Glutamate
a. Dynorphin
Match each phrase with a neurotransmitter.
Cell bodies project from caudate nucleus to substantia nigra
a. Dynorphin
b. Met-enkephalin
c. Beta-endorphin
d. Acetylcholine
e. Norepinephrine
f. Dopamine
g. GABA
h. Serotonin
i. Glutamate
g. GABA
Match each phrase with a neurotransmitter.
Cell bodies project from septum to hippocampus
a. Dynorphin
b. Met-enkephalin
c. Beta-endorphin
d. Acetylcholine
e. Norepinephrine
f. Dopamine
g. GABA
h. Serotonin
i. Glutamate
d. Acetylcholine
Match each phrase with a neurotransmitter.
The rate-limiting step for its synthesis is a Na-dependent transporter
a. Dynorphin
b. Met-enkephalin
c. Beta-endorphin
d. Acetylcholine
e. Norepinephrine
f. Dopamine
g. GABA
h. Serotonin
i. Glutamate
d. Acetylcholine
Match each phrase with a neurotransmitter.
The rate-limiting step for its synthesis is the dietary levels of the precursor molecule
a. Dynorphin
b. Met-enkephalin
c. Beta-endorphin
d. Acetylcholine
e. Norepinephrine
f. Dopamine
g. GABA
h. Serotonin
i. Glutamate
h. Serotonin
Match each phrase with a neurotransmitter.
Shares almost the same synthetic pathway as glutamate
a. Dynorphin
b. Met-enkephalin
c. Beta-endorphin
d. Acetylcholine
e. Norepinephrine
f. Dopamine
g. GABA
h. Serotonin
i. Glutamate
g. GABA
Match each phrase with a neurotransmitter.
Shares almost the same synthetic pathway as dopamine
a. Dynorphin
b. Met-enkephalin
c. Beta-endorphin
d. Acetylcholine
e. Norepinephrine
f. Dopamine
g. GABA
h. Serotonin
i. Glutamate
e. Norepinephrine
Match the area with the following description.
Septohippocampal connection
a. Temporal cortex
b. Occipital cortex
c. Frontal cortex
d. Parietal cortex
e. Fornix
f. Globus pallidus
g. Hypothalamus
h. Cerebellum
i. Hippocampus
j. Raphe nuclei
k. Prefrontal cortex
l. Periaqueductal gray
m. Putamen
n. Thalamus
o. Corpus Callosum
e. Fornix
Match the area with the following description.
Relay center
a. Temporal cortex
b. Occipital cortex
c. Frontal cortex
d. Parietal cortex
e. Fornix
f. Globus pallidus
g. Hypothalamus
h. Cerebellum
i. Hippocampus
j. Raphe nuclei
k. Prefrontal cortex
l. Periaqueductal gray
m. Putamen
n. Thalamus
o. Corpus Callosum
n. Thalamus
Match the area with the following description.
Motor memory
a. Temporal cortex
b. Occipital cortex
c. Frontal cortex
d. Parietal cortex
e. Fornix
f. Globus pallidus
g. Hypothalamus
h. Cerebellum
i. Hippocampus
j. Raphe nuclei
k. Prefrontal cortex
l. Periaqueductal gray
m. Putamen
n. Thalamus
o. Corpus Callosum
h. Cerebellum
Match the area with the following description.
Pain regulation
a. Temporal cortex
b. Occipital cortex
c. Frontal cortex
d. Parietal cortex
e. Fornix
f. Globus pallidus
g. Hypothalamus
h. Cerebellum
i. Hippocampus
j. Raphe nuclei
k. Prefrontal cortex
l. Periaqueductal gray
m. Putamen
n. Thalamus
o. Corpus Callosum
l. Periaqueductal grey
Match the area with the following description.
Cortical and subcortical projection fibers
a. Temporal cortex
b. Occipital cortex
c. Frontal cortex
d. Parietal cortex
e. Fornix
f. Globus pallidus
g. Hypothalamus
h. Cerebellum
i. Hippocampus
j. Raphe nuclei
k. Prefrontal cortex
l. Periaqueductal gray
m. Putamen
n. Thalamus
o. Corpus Callosum
o. corpus callosum
Match the following receptor with its second messenger system.
D1
a. Stimulate adenylate cyclase activity
b. Stimulate phospolipase C activity
c. Inhibit adenylate cyclase activity
d. Directly open an anion channel
e. Directly open a cation channel
a. Stimulate adenylate cyclase activity
Match the following receptor with its second messenger system.
D2
a. Stimulate adenylate cyclase activity
b. Stimulate phospolipase C activity
c. Inhibit adenylate cyclase activity
d. Directly open an anion channel
e. Directly open a cation channel
c. Inhibit adenylate cyclase activity
Match the following receptor with its second messenger system.
AMPA
a. Stimulate adenylate cyclase activity
b. Stimulate phospolipase C activity
c. Inhibit adenylate cyclase activity
d. Directly open an anion channel
e. Directly open a cation channel
e. Directly open a cation channel
Match the following receptor with its second messenger system.
Nicotinic
a. Stimulate adenylate cyclase activity
b. Stimulate phospolipase C activity
c. Inhibit adenylate cyclase activity
d. Directly open an anion channel
e. Directly open a cation channel
e. Directly open a cation channel
Match the following receptor with its second messenger system.
5-HT1D
a. Stimulate adenylate cyclase activity
b. Stimulate phospolipase C activity
c. Inhibit adenylate cyclase activity
d. Directly open an anion channel
e. Directly open a cation channel
c. Inhibit adenylate cyclase activity
Match the following receptor with its second messenger system.
5-HT2A
a. Stimulate adenylate cyclase activity
b. Stimulate phospolipase C activity
c. Inhibit adenylate cyclase activity
d. Directly open an anion channel
e. Directly open a cation channel
b. Stimulate phospolipase C activity
Match the following receptor with its second messenger system.
3-HT3
a. Stimulate adenylate cyclase activity
b. Stimulate phospolipase C activity
c. Inhibit adenylate cyclase activity
d. Directly open an anion channel
e. Directly open a cation channel
e. Directly open a cation channel
Match the following receptor with its second messenger system.
M1
a. Stimulate adenylate cyclase activity
b. Stimulate phospolipase C activity
c. Inhibit adenylate cyclase activity
d. Directly open an anion channel
e. Directly open a cation channel
b. Stimulate phospolipase C activity
Match the following receptor with its second messenger system.
M2
a. Stimulate adenylate cyclase activity
b. Stimulate phospolipase C activity
c. Inhibit adenylate cyclase activity
d. Directly open an anion channel
e. Directly open a cation channel
c. Inhibit adenylate cyclase activity
Match the following receptor with its second messenger system.
Alpha-1
a. Stimulate adenylate cyclase activity
b. Stimulate phospolipase C activity
c. Inhibit adenylate cyclase activity
d. Directly open an anion channel
e. Directly open a cation channel
b. Stimulate phospolipase C activity
Match the following receptor with its second messenger system.
Alpha-2
a. Stimulate adenylate cyclase activity
b. Stimulate phospolipase C activity
c. Inhibit adenylate cyclase activity
d. Directly open an anion channel
e. Directly open a cation channel
c. Inhibit adenylate cyclase activity
Match the following receptor with its second messenger system.
Beta-1
a. Stimulate adenylate cyclase activity
b. Stimulate phospolipase C activity
c. Inhibit adenylate cyclase activity
d. Directly open an anion channel
e. Directly open a cation channel
a. Stimulate adenylate cyclase activity
Match the following receptor with its second messenger system.
GABA-A
a. Stimulate adenylate cyclase activity
b. Stimulate phospolipase C activity
c. Inhibit adenylate cyclase activity
d. Directly open an anion channel
e. Directly open a cation channel
d. Directly open an anion channel
Match the following receptor with its second messenger system.
Kappa
a. Stimulate adenylate cyclase activity
b. Stimulate phospolipase C activity
c. Inhibit adenylate cyclase activity
d. Directly open an anion channel
e. Directly open a cation channel
c. Inhibit adenylate cyclase activity
Match the following receptor with its second messenger system.
NMDA
a. Stimulate adenylate cyclase activity
b. Stimulate phospolipase C activity
c. Inhibit adenylate cyclase activity
d. Directly open an anion channel
e. Directly open a cation channel
e. Directly open a cation channel
Match each phrase with a neurotransmitter.
Activation of its receptors inhibits all types of sensory transmission.
a. Met-enkephalin
b. Beta-endorphin
c. Dynorphin
d. Norepinephrine
e. Dopamine
f. Acetylcholine
g. Serotonin
h. Glutamate
i. GABA
j. A, B and C
g. Serotonin
Match each phrase with a neurotransmitter.
Activation of its receptors inhibit pain transmission selectively.
a. Met-enkephalin
b. Beta-endorphin
c. Dynorphin
d. Norepinephrine
e. Dopamine
f. Acetylcholine
g. Serotonin
h. Glutamate
i. GABA
j. A, B and C
d. Norepinephrine
Match each phrase with a neurotransmitter.
Activation of its receptors cause excitotoxicity
a. Met-enkephalin
b. Beta-endorphin
c. Dynorphin
d. Norepinephrine
e. Dopamine
f. Acetylcholine
g. Serotonin
h. Glutamate
i. GABA
j. A, B and C
h. Glutamate
Match each phrase with a neurotransmitter.
Important for central control of baroreceptor sensitivity
a. Met-enkephalin
b. Beta-endorphin
c. Dynorphin
d. Norepinephrine
e. Dopamine
f. Acetylcholine
g. Serotonin
h. Glutamate
i. GABA
j. A, B and C
d. Norepinephrine
Which three of the following structures is considered a part of the basal ganglia: hypothalamus, caudate nucleus, globus pallidus, locus ceruleus, putamen.
a. ____________, b. __________, c. _____________
a. caudate nucleus
b. globus pallidus
c. putamen
What is the neurotransmitter that has cell bodies in the septum and projects to the hippocampus? _______.
acetylcholine (or ACh)
Name the rate-limiting step in the synthesis of dopamine ______________.
tyrosine hydroxylase
Reuptake transporters for most neurotransmitters are dependent on which ion? _______________.
sodium (Na+)
The raphe nucleus in the reticular activating system is where all of the cell bodies in the brain for this neurotransmitter are localized? _________________.
serotonin (or 5HT)
Which three of the following receptors act as autoreceptors: dopamine D1, alpha-2 adrenergic, 5-HT1B, GABA-A, M2 muscarinic, NMDA glutamate
a. ____________, b. ____________, c.___________
a. alpha-2 adrenergic
b. 5-HT1B
c. M2 muscarinic or GABA-A
. Name the three parts of the basal ganglia:
A. ___________, B. __________, C. ____________.
caudate nucleus, putamen, globus pallidus
What nuclei in the mesencephalon degenerates in Parkinson’s Disease: A. ___________ and, what is the neurotransmitter that is decreased because of this: B. _____________.
the nucleus is substantia nigra, the transmitter is dopamine
Name the rate-limiting step in the synthesis of acetylcholine: _____________
the choline transporter or choline reuptake
Vesicular release of neurotransmitters is dependent on which ion: ______________
calcium
What is the name of the nucleus in the reticular activating system where all of the serotonin cell bodies in the brain are localized: ______________
raphe nucleus
Name the autoreceptor subtype for norepinephrine: ______________
alpha 2 receptors
What is the precursor amino acid for serotonin: __________
tryptophan
Name the four lobes of the cerebrum.
Frontal
Parietal
Temporal
Occipital
Name the three parts of the basal ganglia.
Caudate nucleus
Putamen
Globus Pallidus
What part of the mesencephalon degenerates in Parkinson's disease?
Substantia nigra
What part of the limbic system is probably most important for the formation of short term memory?
Hippocampus
What part of the brain is called the "relay center"?
Thalamus
Name the two major types of cells that make up the CNS:
Neurons
Glial cells
List 2 of the 3 opioid peptide precursor proteins:
a. __________________
b. __________________
pro-opiomelanocortin (POMC), pro-enkephalin, pro-dynorphin (any two)
The cell bodies for norepinephrine neurons are located in ____________ where they are involved in _____________ (increasing or decreasing) arousal.
locus ceruleus
increasing
The cell bodies for ____________ neurons are located in ventral tegmental area where they are involved in regulating ____________ behavior
dopamine
any of the following or similar ideas: addiction, euphoria, positive reinforcement
GABA-A receptors in amygdala control channels for _______________ ions which are involved in regulating ____________ behavior
chloride
anxiety
. Vesicular release of neurotransmitters is dependent on which ion? ______________
calcium
Hypokinesia is thought to be due to too _________ (much/little) dopamine, too ___________(much/little) acetylcholine, and/or too ______________(much/little) GABA in caudate and putamen.
little
much
much
Name two of the three receptor subtypes for endogenous opioids: a. _________, b. _________.
mu (or MOP) or kappa (or KOP) or delta (or DOP)
What is the second messenger system used by each of the following receptors?
5 - HT3
↑Na+ or K+ channels or ↑ cation channel activity
What is the second messenger system used by each of the following receptors?D5 dopamine
↑ Gs or ↑ AC or ↑ cAMP
What is the second messenger system used by each of the following receptors?
Nicotinic
↑ Na+ or K+ or Ca++ channel or ↑ cation channel
What is the second messenger system used by each of the following receptors?
5 - HT1D
↑ Gi or ↑Go or ↓ AC or ↓ cAMP
What is the second messenger system used by each of the following receptors?
NMDA
↑ Na+ or K+ or Ca++ channel or ↑ cation channel
What is the second messenger system used by each of the following receptors?
M2 muscarinic
↑ Gi or ↑Go or ↓ AC or ↓ cAMP
What is the second messenger system used by each of the following receptors?
Alpha - 2 adrenergic
↑ Gi or ↑Go or ↓ AC or ↓ cAMP
What is the second messenger system used by each of the following receptors?
mu opioid
↑ Gi or ↑Go or ↓ AC or ↓ cAMP
What is the second messenger system used by each of the following receptors?
Beta - 1 adrenergic
↑ Gs or ↑ AC or ↑ cAMP
What is the second messenger system used by each of the following receptors?
GABA - A
↑ Cl- channel opening or ↑ anion channel opening
True/False
In the spinal cord, dynorphin neurons are located in the substantia gelatinosa cell layer whereas enkephalin interneurons are located more ventrally.
False. ?
True/False
Activation of mu opioid receptors leads to activation of potassium channels and IPSPs, via mediation by Gs.
False. ?
The spinothalamic tract:
a. is a sensory pathway that carries fine sensations for the hand and the face
b. is a sensory pathway that carries pain and temperature sensations for the body
c. contains both sensory and motor fibers
d. can be inhibited by descending adrenergic and serotonergic projections
e. both b and d are true
b. is a sensory pathway that carries pain and temperature sensations for the body
Match the area with the description.
Temperature regulation
a. Corpus callosum
b. Hypothalamus
c. Thalamus
d. Occipital cortex
e. Frontal cortex
b. Hypothalamus
Match the area with the description
Part of the reticular activating system that "sedates" the brain
a. Temporal cortex
b. Occipital cortex
c. Hypothalamus
d. Parietal cortex
e. Frontal cortex
f. Substancia nigra
g. Putamen
h. Raphe nuclei
i. Globus pallidus
j. Locus ceruleus
h. Raphe nuclei
Match the area with the description.
Important for regulation of the autonomic nervous system
a. Corpus callosum
b. Hypothalamus
c. Thalamus
d. Occipital cortex
e. Frontal cortex
b. Hypothalamus
Match the area with the description.
Provides information to the brain about posture and head orientation
a. Corpus callosum
b. Hypothalamus
c. Thalamus
d. Occipital cortex
e. Frontal cortex
f. Vestibulocochlear nerve
f. Vestibulocochlear nerve
Match the area with the description.
Part of the reticular activating system that "arouses" the brain
a. Corpus callosum
b. Hypothalamus
c. Thalamus
d. Occipital cortex
e. Frontal cortex
f. Locus ceruleus
f. Locus ceruleus
Which cranial nerve (name and number) is the most important for controlling autonomic function?
X – vagus
Which cranial nerve (name and number) provides the brain with information about your posture?
VIII – vestibulocochlear, or auditory
Give the name and number of one of the cranial nerves that control eye movements.
VI – abducens, IV – trochlear, III – oculomotor
Name one of the pyramidal motor pathways.
Corticospinal tract of corticobulbar tract
Which extra pyramidal motor pathway does not receive information from the cortex.
Vestibulospinal tract
Which sensory pathway mediates pain sensations?
Spinothalamic tract
True/False
Caudate nucleus, substantia pars compacta, subthalamic nucleus, thalamus and the internal segment of globus pallidus are all components of basal ganglia.
False. Caudate nucleus, putamen and globus pallidus
Which neurotransmitter is produced by a subset of neurons that are destroyed in the pathogenetic process of Parkinson’s disease:
a. GABA
b. Acetylcholine
c. Levodopa
d. Dopamine
d. Dopamine