• Shuffle
    Toggle On
    Toggle Off
  • Alphabetize
    Toggle On
    Toggle Off
  • Front First
    Toggle On
    Toggle Off
  • Both Sides
    Toggle On
    Toggle Off
  • Read
    Toggle On
    Toggle Off
Reading...
Front

Card Range To Study

through

image

Play button

image

Play button

image

Progress

1/75

Click to flip

Use LEFT and RIGHT arrow keys to navigate between flashcards;

Use UP and DOWN arrow keys to flip the card;

H to show hint;

A reads text to speech;

75 Cards in this Set

  • Front
  • Back
STEGANOGRAPHY?
The practice of communicating secret data
that has been concealed in an innocuous
cover-medium
Encryption aims
protect data by making it
unintelligible
Steganography aims
protect data by making
it undetectable
Steganography by cover selection
Sender selects a cover from a large set of available covers so
that the required message is communicated (e.g. Book titles,
newspaper headlines).
Steganography by cover synthesis
Sender creates the cover that communicates the desired
message (e.g. mimic functions, crafted photographs)
Steganography by cover modification
Sender modifies an existing cover in order to convey the
required message (e.g. modify LSBs in images)
Secret
E.g. image, document, audio, video file
Cover-medium
E.g. File, Data Packet, file slack,
volume slack etc
Carrier-medium
i.e. Cover-medium + Secret =
Carrier-medium
Stego-key
Method or key required to access the
Secret from the carrier-medium (e.g. instructions, key,
password)
Steganalysis
Study, detection and recovery of carrier medium
payloads (i.e. secrets)
Secrecy
Considers the effectiveness of concealment.
For example:
– What is the probability of the secret data being
detected by casual observation?
Capacity
Considers the limitations of storage space for
Secret data within a cover-medium.
– What happens to the cover-medium if a capacity
threshold is exceeded.
Robustness
Considers the limitations, thresholds and
vulnerabilities of a carrier-medium. For
example:
– Does secret data survive when the carrier-medium
is converted, cropped or scaled?
Steganographic Techniques
• Substitution
• Transform domain
• Spread spectrum
• Statistical
• Cover generation
• Distortion
LSB Embedding
A method of steganography that embeds the
binary digits of secret data, into the least
significant bit positions of cover-medium
bytes.
LSB Embedding
BENEFITS
Exploits deficiencies in HVS
• Easy implementation
• Good capacity
• Good secrecy for general use (Cannot be
casually browsed when used with 24 bit images)
LSB Embedding
LIMITATIONS
Robustness performance is poor (although
alternate LSB methods have improved this)
• Can easily be detected by Steganalysis
Secret Sharing Overview
Terminology: given some secret s, a dealer will divide it into shares amongst n shareholders/players
(t,n)-threshold scheme
–Individual shares do not reveal s
–If at least users combine their shares, they can reconstruct s

If t=n: Secret Splitting, otherwise: Secret Sharing
Shamir’s Secret Sharing Scheme
Idea: a polynomial f of degree t-1 is uniquely determined by t different points
•We share n such distinct points (xi, f(xi)) amongst players
The secret will be f(0)
Lagrange Interpolation
Goal: given (x1, y1), ..., (xt, yt), explicitly construct polynomial f of degree t-1, satisfying f(xi) = yi for all i
Dealer-Free (Distributed/Random) Secret Sharing (RSS)
Goal: create and distribute shares without the need for centralised dealer
Ideal in peer-to-peer scenario.
Principle: each player Pi creates random value and distributes its shares to all other players
Proactive Secret Sharing (PSS)
Goal: prevent leakage of information in long-term secret sharing
Important application: key distribution in (wireless) sensor networks, MANETs
Classic scheme: Herzberg
Herzberg’s Scheme
Each player Pi creates a random polynomial with constant term 0

Robust and secret in the presence of passive adversaries
Dynamic Secret Sharing (DSS)
Goal: adapt to dynamic environment
–Change of number of players
–Change threshold value t
Secret Sharing Applications
•Cloud computing
•Virtual private social networks
•Peer-to-peer networking,
MANET (Mobile Ad-hoc Network)
Ramp Secret Sharing Schemes
current active research

This would allow for a larger secret (shorter shares), useful in applications
Anonymity
Security Goals
•Privacy:
protect individuals against harm caused by leakage of their (personal) information
Anonymity
Impact of Privacy Loss without Identification
Damage arises due to data aggregation and the potential of linking together user actions
Anonymity
Security Goals
•Privacy:
protect individuals against harm caused by leakage of their (personal) information
Anonymity Goals
•Sender anonymity:
Remove identifying information from user requests
–Is a difficult task, whether or not servers require authentication
Receiver anonymity:
–Impossibility of identifying the recipient of a message
Unlinkability = Sender and Receiver Anonymity:
–Ensure that attacker is unable to trace the server(s) a given user is talking to
–Cannot distinguish between single user running multiple sessions with single server OR multiple users, each running a single session
Anonymous Routing
mechanism for establishing unlinkability
Anonymity
Mixed Nets
•First method published for anonymous routing
•Idea: network packets are sent through a special service (“mix”)
•This permute the output order of packets
•Encryption prevents tracing back the packets
Onion Routing
Popular technique for implementing anonymous routing
Routing path is unpredictable
•Encryption works in layers
•To some extent, resistant to compromise
Crowds
achieve anonymity by blending in with a crowd
all users form a crowd
send message to random crowd member
randomly forwards to another member, or the server
Anonymous Authentication Protocols
Secure authentication
no unauthorised user should get access by the server, except with a very small probability
Anonymous Authentication Protocols
Anonymity:
the server should not know which of the user it is interacting with
Verifiable Anonymity
if a malicious server can reveal user identity, this will always be detected by the user
Ring Signatures
–Guaranteed that signer belongs to a specific set of users
–However, impossible to detect which particular user signed
Anonymous Authentication Using Ring Signatures
1.Server sends a random challenge w to user
2.User then returns a ring signature on w
3.Server grants access if the signature is valid
Confidentiality:
to prevent unauthorised
disclosure of the information
Integrity:
to prevent unauthorised modification of
the information
Availability:
to guarantee access to information
Authentication:
to prove the claimed identity can
be Data or Entity authentication
Non repudiation
to prevent false denial of
performed actions
Authorisation:
What Alice can do”
• Auditing:
to securely record evidence of
performed actions
Attack-tolerance
ability to provide some degree
of service after failures or attacks
Disaster Recovery
ability to recover a safe state
Types of attack
• Passive
the attacker can only read any information
– Tempest (signal intelligence)
– Packet Sniffing
Types of attack
• Active:
the attacker can read, modify,
generate, destroy any information
Virtual Private Social Networks
A VPSN, in analogy with VPN, leverages an already existing host social network.
Nodes of a VPSN are users that share information (profile) confidential with regard to other users not part of the VPSN.
VSPN
OSN
Much of this data is shared via Online Social Networks (OSNs) : Facebook, LinkedIn, Twitter, and Google+.

Host vast quantities of user generated content (UGC)
VSPN
Dichotomy of Security Goals – OSN Host
Mitigate risks of false account registrations, identity masquerading, account compromising (e.g. hacking), and threats from malware.
VSPN
Dichotomy of Security Goals - Users
Ideally, users want to use trusted OSNs that implement the security goals of confidentiality, integrity, and availability to UGC.
VSPN
UGC Data Threats
Data Exploitation
An OSN host may impose the right to use UGC for commercial or marketing purposes, without the need to consult, or compensate the user
VSPN
UGC Data Threats
Data Censorship
An OSN host may impose the right to modify or remove UGC for reasons of censorship or violation of terms and conditions.
VSPN
UGC Data Threats
Data Sanitisation
OSN hosts may sanitise user data prior to publication, in order to protect themselves and other users from malware.
VPSN Characteristics
hidden to users that are not part of it, as well as the OSN provider.
VPSN inherits security mechanisms from the OSN.
User profile information can be hidden from any non-intended audience
VPSN Confidentiality
Our approach is based on combining two fundamental cryptographic techniques:
- information distribution (secret sharing)
- information hiding (steganography).
Mobile Ad-hoc Networks (MANETs)
•Peer-to-peer, decentralised network architecture
•Nodes are self-organising and (highly) mobile
•They can send, receive or route data
•No fixed infrastructure
•Communication uses wireless links
MANET Routing Protocols
–Proactive (table-driven)
–Reactive (On-Demand)
–Hybrid
–Flow-oriented –Hierarchical
–Power-aware –Multicast
Cryptographic Tools
•Information Protection (Encryption/Decryption)
•Information Fingerprinting (Hash Functions)
•Information Distribution (Secret Sharing)
•Information Hiding (Steganography)
Key exchange and management protocols
SSL,
TLS,
HTTPS,
IPSec
Secret Sharing
• A (t, n) perfect threshold scheme
–The secret s can be divided into n parts (shares)
–Less than t shares to not reveal any information about s
–Equal to or more than t shares allow reconstructing s
CIA
•Confidentiality
•Integrity
–Data Integrity, Origin Integrity (Authentication)
–Non-Repudiation
•Availability
Aspects of MANET Security
•Secure Routing
•(Specific) Attack Prevention
•Intrusion Detection
•Key Management
Aspects of MANET Security
Secure Routing
MANETs do not have any pre-deployed infrastructure
•Nodes cooperatively form the network by agreeing to certain routing messages
•Thus, intermediate nodes must route the packets
Specification-based Intrusion Detection
Hand-made model of states and transitions. Detect:
–A node moves to an illegal state
–A node makes an illegal transition (input missing)
–A node transitions without proper output
–Messages sent don’t follow expected model
Statistical-based IDS
Can find attacks where state is not violated
–Flooding
–Dropping
–Partitioning
MANET - Joining the Network
–A new node can join the network by securely contacting t member nodes and receiving all required information
•Its share of the network-wide private key
•Its own private key
•The network-wide public key
•Capability to compute public keys
•Capability to compute shared symmetric keys
MANET
Saxena Approach
–A verifiable secret sharing scheme is used in order to distribute the security parameters
–Each node has a share of the network-wide private key