• Shuffle
    Toggle On
    Toggle Off
  • Alphabetize
    Toggle On
    Toggle Off
  • Front First
    Toggle On
    Toggle Off
  • Both Sides
    Toggle On
    Toggle Off
  • Read
    Toggle On
    Toggle Off
Reading...
Front

Card Range To Study

through

image

Play button

image

Play button

image

Progress

1/16

Click to flip

Use LEFT and RIGHT arrow keys to navigate between flashcards;

Use UP and DOWN arrow keys to flip the card;

H to show hint;

A reads text to speech;

16 Cards in this Set

  • Front
  • Back
Polymerizing
as you add more silica to magma, it becomes more viscous
Partial Melting
some minerals melt while others remain solid due to differences in their melting point
Assimilation
magma can melt surrounding rock, and assimilates new compounds into mixture produced in the upper mantle.
Magma Mixing
magma can mix with other bodies of magma or separate
Decompression
hot magma rises, pressure is lowered at shallow depths, therefore lowering its melting point. This causes melting.
Volatiles
Volatiles in a magma with a high viscosity, generally felsic with a higher silica (SiO2) content, tend to produce eruptions that are explosive. Volatiles in a magma with a low viscosity, generally mafic with a lower silica content, tend to vent and can give rise to a lava fountain.
Magma Composition
Si, O, Ca, Al, Fe, Na, Mg, K
Weight Percent
Earth is very felsic on the outside, very magic on inside.
Intrusions
is liquid rock that forms under Earth's surface. Magma from under the surface is slowly pushed up from deep within the earth into any cracks or spaces it can find, sometimes pushing existing country rock out of the way, a process that can take millions of years. As the rock slowly cools into a solid, the different parts of the magma crystallize into minerals. Many mountain ranges, such as the Sierra Nevada in California, are formed mostly by intrusive rock, large granite (or related rock) formations.
Fractional Crystallization
is the removal and segregation from a melt of mineral precipitates; except in special cases, removal of the crystals changes the composition of the magma. Fractional crystallization in silicate melts (magmas) is complex compared to crystallization in chemical systems at constant pressure and composition, because changes in pressure and composition can have dramatic effects on magma evolution.
Dike
A dike or dyke in geology is a type of sheet intrusion referring to any geologic body that cuts discordantly across
Sill
a sill is a tabular sheet intrusion that has intruded between older layers of sedimentary rock, beds of volcanic lava or tuff, or even along the direction of foliation in metamorphic rock. The term sill is synonymous with concordant intrusive sheet. This means that the sill does not cut across preexisting rocks, in contrast to dikes which do cut across older rocks.
Laccolith
A laccolith is a sheet intrusion (or concordant pluton) that has been injected between two layers of sedimentary rock. The pressure of the magma is high enough that the overlying strata are forced upward, giving the laccolith a dome or mushroom-like form with a generally planar base.
Pluton
A pluton in geology is a body of intrusive igneous rock (called a plutonic rock) that crystallized from magma slowly cooling below the surface of the Earth. Plutons include batholiths, dikes, sills, laccoliths, lopoliths, and other igneous bodies. In practice, "pluton" usually refers to a distinctive mass of igneous rock, typically several kilometers in dimension, without a tabular shape like those of dikes and sills.
Batholith
is a large emplacement of igneous intrusive (also called plutonic) rock that forms from cooled magma deep in the Earth's crust. Batholiths are almost always made mostly of felsic or intermediate rock-types, such as granite, quartz monzonite, or diorite
Xenolith
s a rock fragment which becomes enveloped in a larger rock during the latter's development and hardening. In geology, the term xenolith is almost exclusively used to describe inclusions in igneous rock during magma emplacement and eruption. Xenoliths may be engulfed along the margins of a magma chamber, torn loose from the walls of an erupting lava conduit or explosive diatreme or picked up along the base of a flowing lava on Earth's surface.