• Shuffle
    Toggle On
    Toggle Off
  • Alphabetize
    Toggle On
    Toggle Off
  • Front First
    Toggle On
    Toggle Off
  • Both Sides
    Toggle On
    Toggle Off
  • Read
    Toggle On
    Toggle Off
Reading...
Front

Card Range To Study

through

image

Play button

image

Play button

image

Progress

1/48

Click to flip

Use LEFT and RIGHT arrow keys to navigate between flashcards;

Use UP and DOWN arrow keys to flip the card;

H to show hint;

A reads text to speech;

48 Cards in this Set

  • Front
  • Back

Integration by Parts Formula

∫ u dv = uv - ∫ v du

Integration by Parts, Definite Integral Formula

∫(a to b) u dv = uv|(a to b) - ∫(a to b) v du

For ∫ sin^n(x)cos^m(x) dx and n is odd we:

take a sine out and convert the rest to cosines using sin^2(x) = 1 - cos^2(x), then use the substitution u = cos(x)

For ∫ sin^n(x)cos^m(x) dx and m is odd we:

take a cosine out and convert the rest to sines using cos^2(x) = 1 - sin^2(x), then use the substitution u = sin(x)

For ∫ sin^n(x)cos^m(x) dx and n and m are both odd we:

take out either a cosine or a sine

For ∫ sin^n(x)cos^m(x) dx and n and m are both even we:

use double angle and/or half angle formulas to reduce the integral into a form that can be integrated

For ∫ tan^n(x)sec^m(x) dx and n is odd we:

take a tangent out and a secant out and convert the rest to secants using tan^2(x) = sec^2(x) - 1, then use the substitution u = sec(x)

For ∫ tan^n(x)sec^m(x) dx and m is even we:

take 2 secants out and convert the rest to tangents using sec^2(x) = 1 + tan^2(x), then use the substitution u = tan(x)

For ∫ tan^n(x)sec^m(x) dx and n is odd and m is even we:

we take out either a tan(x)sec(x) or sec^2(x)

For ∫ tan^n(x)sec^m(x) dx and n is even and m is odd we:

deal with each integral sepreatley

If integral contains √ (a^2 - x^2), what is the substitution, identity, and quadrant we use?

u = a sin(ϴ)


cosϴ = √ (1 - sin^2(ϴ))


In quadrant 1 and 4

If integral contains √ (a^2 + x^2), what is the substitution, identity, and quadrant we use?

u = a tan(ϴ)


secϴ = √ (1 + tan^2(ϴ))


In quadrant 1 and 4

If integral contains √ (x^2 - a^2), what is the substitution, identity, and quadrant we use?

u = a sec(ϴ)


tanϴ = √ (sec^2(ϴ) - 1)


In quadrant 1 and 3

Partial Fractions: ∫ P(x)/Q(x)




If P(x) has a smaller degree than Q(x) then we:

factor the denominator and find the partial fraction decomposition

Partial Fractions: ∫ P(x)/Q(x)




If P(x) has a larger degree than Q(x) then we:

use long division to make the degree of P(x) smaller or equal to the degree of Q(x) and then factor the denominator and find the partial fraction decomposition

if Q(x) is: ax+b then the PFD is

A / ax+b

if Q(x) is: (ax+b)^n then the PFD is

A / ax+b + B / (ax+b)^2 + ... + Z / (ax+b)^n

if Q(x) is: ax^2+bx+c then the PFD is

(Ax + B) / (ax^2+bx+c)

if Q(x) is: (ax^2+bx+c)^n then the PFD is

(Ax + B)/(ax^2+bx+c) +...+ (Cx + D)/(ax^2+bx+c)^n

convergent integral

limit exists and is a finite number

divergent integral

limit either doesn’t exist or is (plus or minus) infinity.

d/dx (sinx)

cosx

d/dx (cosx)

-sinx

d/dx (tanx)

sec^2(x)

d/dx (secx)

secxtanx

d/dx (cscx)

-cscxcotx

d/dx (cotx)

-csc^2(x)

d/dx (arcsinx)

1/√ (1-x^2)

d/dx (arccosx)

-1/√ (1-x^2)

d/dx (arctanx)

1/(1+x^2)

d/dx (arccotx)

-1/(1+x^2)

d/dx (arcsecx)

1/(|x|√(x^2 - 1))

d/dx (arccscx)

-1/(|x|√(x^2 - 1))

d/dx (a^x)

a^x ln(a)

d/dx (ln(x))

1/|x|

d/dx (log_a (x)

1/(xlna)

∫ 1/ (ax+b) dx

(1/a) ln|ax+b| + C

∫ (1/x) dx

ln|x| + C

∫ cos x dx

sin x + C

∫ sin x dx

-cos x + C

∫ sec^2 x dx

tan x +C

∫ secxtanx dx

sec x + C

∫ cscxcotx dx

-cscx + C

∫csc^2 x dx

-cotx + C

∫ tan x dx

ln|secx| + C

∫cot x dx

ln|sin x| + C

∫ sec x dx

ln|sec x +tan x| + C

∫ csc x dx

ln|cscx-cotx| + C