Study your flashcards anywhere!

Download the official Cram app for free >

  • Shuffle
    Toggle On
    Toggle Off
  • Alphabetize
    Toggle On
    Toggle Off
  • Front First
    Toggle On
    Toggle Off
  • Both Sides
    Toggle On
    Toggle Off
  • Read
    Toggle On
    Toggle Off
Reading...
Front

How to study your flashcards.

Right/Left arrow keys: Navigate between flashcards.right arrow keyleft arrow key

Up/Down arrow keys: Flip the card between the front and back.down keyup key

H key: Show hint (3rd side).h key

A key: Read text to speech.a key

image

Play button

image

Play button

image

Progress

1/15

Click to flip

15 Cards in this Set

  • Front
  • Back
Exponential Rule (with e)

y=ke^(f(x))
y'=kf'(x)e^(f(x))
Logarithm Rule

y=klogb(f(x))
y'=kf'(x)/(lnb*f(x))
Natural Log

y=klnf(x)
y'=kf'(x)/f(x)
y=sin(f(x))
y'=cos(f(x))*f'(x)
y=cos(f(x))
y'=-sin(f(x))*f'(x)
y=tan(f(x))
y'=(sec^2(f(x)))*f'(x)
y=csc(f(x))
y'=-csc(f(x))cot(f(x))*f'(x)
y=sec(f(x))
y'=sec(f(x))tan(f(x))*f'(x)
y=cot(f(x))
y'=-csc^2(f(x))*f'(x)
y=sin^-1(f(x))
y'=f'(x)/(sqrt(1-f^2(x)))
y=cos^-1(f(x))
y'=-f'(x)/(sqrt(1-f^2(x)))
y=tan^-1(f(x))
y'=f'(x)/1+f(x)^2
y=csc^-1(f(x))
y'=-f'(x)/(abs(x)(x^2-1))
y=sec^-1(f(x))
y'=f'(x)/abs(x)sqrt(f(x)^2-1)
y=cot^-1(f(x))
y'=f'(x)/(1+f^2(x))