• Shuffle
    Toggle On
    Toggle Off
  • Alphabetize
    Toggle On
    Toggle Off
  • Front First
    Toggle On
    Toggle Off
  • Both Sides
    Toggle On
    Toggle Off
  • Read
    Toggle On
    Toggle Off
Reading...
Front

Card Range To Study

through

image

Play button

image

Play button

image

Progress

1/39

Click to flip

Use LEFT and RIGHT arrow keys to navigate between flashcards;

Use UP and DOWN arrow keys to flip the card;

H to show hint;

A reads text to speech;

39 Cards in this Set

  • Front
  • Back
Pythagorean Identities
sin^2+cos^2=1
tan^2+1=sec^2
1+cot^2=csc^2
tan and cot identities
tan=sin/cos
cot=cos/sin
product rule
f'g+g'f
derivatives
sin
cos
tan
cos
-sin
sec^2
derivatives
sec
csc
cot
sectan
-csccot
-csc^2
integral
1/sqrt(1-x^2)
sin^-1
integral
1/1+x^2
tan^-1
integral
sec^2
csc^2
tan
-cot
a^2-b^2x^2
a/bsin
b^2x^2-a^2
a/bsec
a^2+b^2x^2
a/btan
area between curves
integral(a to b) [upper function]^2-[lower function]^2
volume of revolution- rings
pi integral[(outer radius)^2-(inner radius)^2]
volume of revolution- cylinders
2pi integral[radius*height]
work
integral[force]
arc length
integral[sqrt(1+(dy/dx)^2)] if y=f(x)
integral[sqrt(1+(dx/dy)^2)] if x=f(y)
integral[sqrt(r^2+(dr/dθ)^2)] if r=f(θ)
Surface area
integral[2pi*y*ds] if rotated about x axis
integral[2pi*x*ds] if rotated about y axis

ds= [sqrt(1+(dy/dx)^2)] if y=f(x)
[sqrt(1+(dx/dy)^2)] if x=f(y)
[sqrt(r^2+(dr/dθ)^2)] if r=f(θ)
change in x
(b-a)/n
a=x(0)
b=x(n)
midpoint rule
(change in x)[f(x1*)+f(x2*)+...+f(xn*)],
xi* is midpoint[x(i-1), xi]
trapezoid rule
(change in x)/2[f(x0)+2f(x1)+2(fx2)+...+f(xn)]
simpsons rule
(change in x)/3[f(x0)+4(f(x1)+2f(x2)+...+2f(x(n-2))+4f(x(n-1))+f(xn)]
geometric series
Σ(n=0 to infinity) [ar^n]

=a/1-r
Ratio Test
L=lim(n->infinity)|a(n+1)/a(n)|

Then,
1. if L<1 the series is absolutely convergent
2. if L>1 the series is divergent
3. if L=0 the test is inconclusive
Alternating series test
Σa(n)
a(n)=(-1)^n(b(n) where b(n)>=0 for all n
then if,
1. lim(n->infinity) b(n)=0 and,
2.{b(n)} is a decreasing sequence
the series Σa(n) is convergent.
Comparison Test
Suppose that we have two series Σa(n) and Σb(n) with a(n), b(n) >= 0 for all n and a(n)<=b(n) for all n.
Then,
If Σb(n) is convergent then so is Σa(n).
If Σa(n) is divergent then so is Σb(n).
Limit Comparison Test
Suppose that we have two series Σa(n) and Σb(n) with a(n)>=0, b(n)>0 for all n.

Define, c=lim(n->infinity)a(n)/b(n)

If c is positive (i.e. c>0 ) and is finite (i.e. c<infinity ) then either both series converge or both series diverge.
Root Test
Suppose that we have the series Σa(n) .

Define, L=lim(n->infinify) |a(n)|^(1/n)

Then,
1. if L<1 the series is absolutely convergent (and hence convergent).
2. if L>1 the series is divergent.
3. if L=1 the series may be divergent, conditionally convergent, or absolutely convergent.
Taylor Series
f(x)=Σ(n=0->infinity)[(f^(n)(a)/n!)(x-a)^n]

f(a)+f'(a)(x-a)+(f''(a)/2!)(x-a)^2+(f'''(a)/3!)(x-a)^3+...
Horizontal Tangent of Parametric Equation
dy/dt=0
Vertical Tangent for Parametric Equations
dx/dt=0
Area Under Parametric Curve
integral(a->b)[y*x']
Arc Length for parametric equations
integral(a->b)[sqrt(x'^2+y'^2)]
Cartesian to polar coordinates
x=rcos(θ)
y=rsin(θ)
x^2+y^2=r^2
tan^-1(y/x)=θ
Derivative of polar coordinates
(dr/dθ)sinθ+rcosθ
-----------------------
(dr/dθ)cosθ-rsinθ
Area with polar coordinates
A=integral(a->b)[(1/2)r^2]
Area enclosed by two curves
integral(a->b)[1/2(r(0)^2-r(i)^2)]
Arc length polar cooridinates
integral[sqrt(r^2+r'^2)]
Surface area polar coordinates
integral[2pi*y*ds] rotation around x-axis
integral[2pi*x*ds] rotation around y-axis

ds=sqrt(r^2+r'^2)
Center of mass coordinates
x=1/A*integral(a->b)[x(f(x)-g(x))]

y=1/A*integral(a->b)[1/2(f(x)^2-g(x)^2)]

A=integral(a->b)[f(x)-g(x)]