• Shuffle
    Toggle On
    Toggle Off
  • Alphabetize
    Toggle On
    Toggle Off
  • Front First
    Toggle On
    Toggle Off
  • Both Sides
    Toggle On
    Toggle Off
  • Read
    Toggle On
    Toggle Off
Reading...
Front

Card Range To Study

through

image

Play button

image

Play button

image

Progress

1/6

Click to flip

Use LEFT and RIGHT arrow keys to navigate between flashcards;

Use UP and DOWN arrow keys to flip the card;

H to show hint;

A reads text to speech;

6 Cards in this Set

  • Front
  • Back
Intermediate value theorem
Suppose f(x) is continuous on an interval I, and a and b are any two points of I. Then if y is a number between f(a) and f(b), there exists a number c between a and b such that f(c)=y
Rolle's Theorem
Suppose that y=f(x) is continuous at every point of the clsoed interval [a,b] and is differentiable at every point of its interior (a,b). If f(a)=f(b)=0, then there is at least one number c in (a,b) at which f'(c)=0.
Mean Value Theorem
Suppose y=f(x) is continuous on a closed interval [a,b] and differentiable on the interval's interior (a,b). Then there is at least one point c in (a,b) at which
(f(b)-f(a))/(b-a)=f'(c).
corollary 1 to MVT
Functions with zero derivatives are constant-if f'(x)=0 at each point of an interval I, then f(x)=C for all x in I, where C's a constant
corollary 2 to MVT
Functions with same derivative differ by a constant-is f'(x)=g'(x) at each point of an interval I, then there exists a constant C such that f(x)=g(x)+C for all x in I
corollary 3 to MVT
The first derivative test for increasing and decreasing- suppose the f is continuous on [a,b] and differentiable on (a,b). If f'>0 at each point of (a,b), then f increases on [a,b]. If f'<0 at each point of (a,b), then f decreases on [a,b]