• Shuffle
    Toggle On
    Toggle Off
  • Alphabetize
    Toggle On
    Toggle Off
  • Front First
    Toggle On
    Toggle Off
  • Both Sides
    Toggle On
    Toggle Off
  • Read
    Toggle On
    Toggle Off
Reading...
Front

Card Range To Study

through

image

Play button

image

Play button

image

Progress

1/67

Click to flip

Use LEFT and RIGHT arrow keys to navigate between flashcards;

Use UP and DOWN arrow keys to flip the card;

H to show hint;

A reads text to speech;

67 Cards in this Set

  • Front
  • Back
System development process
a set of activities, methods, best practices, deliverables, and automated tools that stakeholders (Chapter 1) use to develop and continuously improve information systems and software (Chapters 1 and 2).
Capability Maturity Model (CMM)
a standardized framework for assessing the maturity level of an organization’s information system development and management processes and products. It consists of five levels of maturity.
5 Levels of Maturity in the Capability Maturity Model (CMM) and Define
Level 1—Initial: System development projects follow no prescribed process.
Level 2—Repeatable: Project management processes and practices established to track project costs, schedules, and functionality.
Level 3—Defined: Standard system development process (methodology) is purchased or developed. All projects use a version of this process.
Level 4—Managed: Measurable goals for quality and productivity are established.
Level 5—Optimizing: The standardized system development process is continuously monitored and improved based on measures and data analysis established in Level 4.
System life cycle
the factoring of the lifetime of an information system into two stages, (1) systems development and (2) systems operation and maintenance.
System development methodology
a formalized approach to the systems development process; a standardized development process that defines (as in CMM Level 3) a set of activities, methods, best practices, deliverables, and automated tools that system developers and project managers are to use to develop and continuously improve information systems and software.
8 Representative System Development Methodologies
Architected Rapid Application Development (Architected RAD)
Dynamic Systems Development Methodology (DSDM)
Joint Application Development (JAD)
Information Engineering (IE)
Rapid Application Development (RAD)
Rational Unified Process (RUP)
Structured Analysis and Design
eXtreme Programming (XP)
10 Principles of System Development (GUEDEJDDD)
Get the system users involved.
Use a problem-solving approach.
Establish phases and activities.
Document through development.
Establish standards.
Manage the process and projects
Justify systems as capital investments.
Don’t be afraid to cancel or revise scope.
Divide and conquer.
Design systems for growth and change.
Classical Problem-solving approach (5 steps)
Study and understand the problem, its context, and its impact.
Define the requirements that must be meet by any solution.
Identify candidate solutions that fulfill the requirements, and select the “best” solution.
Design and/or implement the chosen solution.
Observe and evaluate the solution’s impact, and refine the solution accordingly.
Process management
an ongoing activity that documents, manages, oversees the use of, and improves an organization’s chosen methodology (the “process”) for system development. Process management is concerned with phases, activities, deliverables, and quality standards should be consistently applied to all projects.
Project management
the process of scoping, planning, staffing, organizing, directing, and controlling a project to develop an information system at a minimum cost, within a specified time frame, and with acceptable quality.
3 Ways to Justify Information Systems as Capital Investments
Cost-effectiveness
Strategic information systems plan
Strategic enterprise plan
Cost-effectiveness
The result obtained by striking a balance between the lifetime costs of developing, maintaining, and operating an information system and the benefits derived from that system. Cost-effectiveness is measured by a cost-benefit analysis.
Strategic information systems plan
a formal strategic plan (3-5 years) for building and improving an information technology infrastructure and the information system applications that use that infrastructure.
Strategic enterprise plan
a formal strategic plan (3-5 years) for an entire business that defines its mission, vision, goals, strategies, benchmarks, and measures of progress and achievement. Usually, the strategic enterprise plan is complemented by strategic business unit plans that define how each business unit will contribute to the enterprise plan. The information systems plan is one of those unit-level plans.
Creeping commitment
a strategy in which feasibility and risks are continuously reevaluated throughout a project. Project budgets and deadlines are adjusted accordingly.
Risk management
the process of identifying, evaluating, and controlling what might go wrong in a project before it becomes a threat to the successful completion of the project or implementation of the information system. Risk management is drive by risk analysis or assessment.
Where Do Systems Development Projects Come From?(3) POD
Problem – an undesirable situation that prevents the organization from fully achieving its purpose, goals, and/or objectives.
Opportunity – a chance to improve the organization even in the absence of an identified problem.
Directive - a new requirement that is imposed by management, government, or some external influence.
2 types of Planned Projects
An information systems strategy plan has examined the business as a whole to identify those system development projects that will return the greatest strategic (long-term) value to the business
A business process redesign has thoroughly analyzed a series of business processes to eliminate redundancy and bureaucracy and to improve efficiency and value added. Not it is time to redesign the supporting information system for those redesigned business processes.
Define Unplanned projects and the 2 types of unplanned projects
riggered by a specific problem, opportunity, or directive that occurs in the course of doing business.
Steering committee – an administrative body of system owners and information technology executives that prioritizes and approves candidate system development projects.
Backlog – a repository of project proposals that cannot be funded or staffed because they are a lower priority than those that have been approved for system development.
The PIECES Problem-Solving Framework
P - the need to improve performance
I - the need to improve information (and data)
E - the need to improve economics, control costs, or increase profits
C - the need to improve control or security
E - the need to improve efficiency of people and processes
S - the need to improve service to customers, suppliers, partners, employees, etc.
FAST - (Framework for the Application of Systems Thinking )
a hypothetical methodology used throughout this book to demonstrate a representative systems development process.
Scope Definition Phase
Problem statement
Constraint
Scope creep
Statement of work
Problem statement
a statement and categorization of problems, opportunities, and directives; may also include constraints and an initial vision for the solution. Synonyms include preliminary study and feasibility assessment.
Constraint
any factor, limitation, or restraint that may limit a solution or the problem-solving process.
Scope creep
a common phenomenon wherein the requirements and expectations of a project increase, often without regard to the impact on budget and schedule.
Statement of work
a contract with management and the user community to develop or enhance an information system; defines vision, scope, constraints, high-level user requirements, schedule, and budget. Synonyms include project charter, project plan, and service-level agreement.
4 questions to ask in the Requirements Analysis Phase
What capabilities should the new system provide for its users?
What data must be captured and stored?
What performance level is expected?
What are the priorities of the various requirements?
3 steps in the Logical Design Phase
Logical design
System model
Analysis paralysis
Logical design
the translation of business user requirements into a system model that depicts only the business requirements and not any possible technical design or implementation of those requirements. Common synonyms include conceptual design and essential design.
System model
a picture of a system that represents reality or a desired reality. System models facilitate improved communication between system users, system analysts, system designers, and system builders.
Analysis paralysis
a satirical term coined to describe a common project condition in which excessive system modeling dramatically slows progress toward implementation of the intended system solution.
5 ways to evaluate candidate solutions in Decision Analysis Phase
Technical feasibility
Operational feasibility
Economic feasibility
Schedule feasibility
Risk feasibility
Decision Analysis Phase terms
Technical feasibility – Is the solution technically practical? Does our staff have the technical expertise to design and build this solution?
Operational feasibility – Will the solution fulfill the users’ requirements? To what degree? How will the solution change the users’ work environment? How do users feel about such a solution?
Economic feasibility – Is the solution cost-effective?
Schedule feasibility – Can the solution be designed and implemented within an acceptable time?
Risk feasibility – What is the probability of a successful implementation using the technology and approach?
Physical design
the translation of business user requirements into a system model that depicts a technical implementation of the users’ business requirements. Common synonyms include technical design or implementation model.
Two extreme philosophies of physical design
Design by specification – physical system models and detailed specification are produced as a series of written (or computer-generated) blueprints for construction.

Design by prototyping – Incomplete but functioning applications or subsystems (called prototypes) are constructed and refined based on feedback from users and other designers.
4 steps to delivery and installation phase
Deliver the system into operation (production)
Deliver User training
Deliver completed documentation
Convert existing data
System support
the ongoing technical support for users of a system, as well as the maintenance required to deal with any errors, omissions, or new requirements that may arise.
Waterfall development approach
an approach to systems analysis and design that completes each phase one after another and only once .
Iterative development approach
an approach to systems analysis and design that completes the entire information system in successive iterations. Each iterations does some analysis, some design, and some construction. Synonyms include incremental and spiral.
3 part of Model-driven development
Process modeling
Data modeling
Object modeling
Process modeling
a process-centered technique popularized by the structured analysis and design methodology that used models of business process requirements to derive effective software designs for a system.
Data modeling
a data-centered technique used to model business data requirements and design database systems that fulfill those requirements.
Object modeling
a technique that attempts to merge the data and process concerns into singular constructs called objects. Object models are diagrams that document a system in terms of its objects and their interactions.
Logical model
a pictorial representation that depicts what a system is or does.
Physical model
a technical pictorial representation that depicts what a system is or does and how the system is implemented.
Advantages of Model-Driven Development Strategy
Requirements often more thorough
Easier to analyze alternatives
Design specifications often more stable and flexible
Systems can be constructed more correctly the first time
Disadvantages of Model-Driven Development Strategy
Time consuming
Models only as good as users' understanding of requirements
Reduces users' role because pictures are not software
Can be Inflexible
Rapid application development (RAD)
a system development strategy that emphasizes speed of development through extensive user involvement in the rapid, iterative, and incremental construction of series of functioning prototypes of a system that eventually evolves into the final system.
2 types of Rapid application development (RAD) strategies?
Prototype – a small-scale, representative, or working model of the users’ requirements or a proposed design for an information system.

Time box – the imposition of a non-extendable period of time, usually 60-90 days, by which the first (or next) version of a system must be delivered into operation.
7 advantages of a Rapid Application Development Strategy
User requirements often uncertain or imprecise
Encourages active user and management participation
Projects get higher visibility and support
Stakeholders see working solutions more rapidly
Errors detected earlier
Testing and training are natural by-products
More natural process because change is expected
5 Disadvantages of a Rapid Application Development Strategy
May encourage "code, implement, repair" mentality
Can solve wrong problem since problem analysis is abbreviated
May discourage analysts from considering alternatives
Stakeholders reluctant to throw away prototype
Emphasis on speed can adversely impact quality
Commercial application package
software application that can be purchased and customized to meet business requirements of a large number of organizations or specific industry. A synonym is commercial off-the-shelf (COTS) system
Request for proposal (RFP)
formal document that communicates business, technical, and support requirements for application software package to vendors that may wish to compete for the sale of application package and services.
Request for quotation (RFQ)
formal document that communicates business, technical, and support requirements for an application software package to a single vendor that has been determined as being able to supply that application package and services.
Gap analysis
comparison of business and technical requirements for a commercial application package against capabilities and features of a specific commercial application package to define requirements that cannot be met.
3 parts of the Commercial application package
Request for proposal (RFP)
Request for quotation (RFQ)
Gap analysis
5 advantages of Commercial Application Package Implementation Strategy
Systems usually implemented more quickly
Avoids staffing required to develop in-house solutions
Generally less expensive
Vendor assumes responsibility for improvements and corrections
Many business functions more similar than dissimilar for all businesses in a given industry
3 disadvantages of the Commercial Application Package Implementation Strategy
Dependent on long-term viability of vendor
Rarely reflects ideal solution
Often resistance to changes business processes to adapt to software
3 Automated Tools and Technology
Computer-aided systems engineering (CASE)
Application development environments (ADEs)
Process and project managers
Computer-aided systems engineering (CASE)
automated software tools that support the drawing and analysis of system models and associated specifications. Some CASE tools also provide prototyping and code generation capabilities.
CASE repository
system developers’ database where developers can store system models, detailed descriptions and specifications, and other products of system development. Synonyms: dictionary and encyclopedia.
Forward engineering
CASE tool capability that can generate initial software or database code directly from system.
Reverse engineering
CASE tool capability that can generate initial system models from software or database code.
Application development environments (ADEs)
an integrated software development tool that provides all the facilities necessary to develop new application software with maximum speed and quality. A common synonym is integrated development environment (IDE)
7 Application development environment facilities
Programming languages or interpreters
Interface construction tools
Middleware
Testing tools
Version control tools
Help authoring tools
Repository links
Process manager application
an automated tool that helps document and manage a methodology and routes, its deliverables, and quality management standards. An emerging synonym is methodware
Project manager application
an automated tool to help plan system development activities (preferably using the approved methodology), estimate and assign resources (including people and costs), schedule activities and resources, monitor progress against schedule and budget, control and modify schedule and resources, and report project progress.