• Shuffle
    Toggle On
    Toggle Off
  • Alphabetize
    Toggle On
    Toggle Off
  • Front First
    Toggle On
    Toggle Off
  • Both Sides
    Toggle On
    Toggle Off
  • Read
    Toggle On
    Toggle Off
Reading...
Front

Card Range To Study

through

image

Play button

image

Play button

image

Progress

1/73

Click to flip

Use LEFT and RIGHT arrow keys to navigate between flashcards;

Use UP and DOWN arrow keys to flip the card;

H to show hint;

A reads text to speech;

73 Cards in this Set

  • Front
  • Back
kinematic equation 1:
v=?
v=v.+at
kinematic equation 2:
^x=?
^x=v.t+1/2at^2
kinematic equation 3:
v^2=?
v^2=v.^2+2a^x
Newton's 2nd law
F=ma
Frictional Force
F=uN (u=frictional constant)
Centripetal Force
F=mv^2/r
Centripetal Acceleration
A=v^2/r
Torque
T=FdsinO
Momentum
p=mv
Elastic Collision
KE1+KE2=KE1'+KE2'
Inelastic Collision
m1mv1+m2v2=(m1+m2)v
Impulse
J=F^t=^p
Kinetic Energy
KE=1/2mv^2
Change in Gravitational Potential
^PE=mgh
Work
W=F^dcosO
Power
W/^t
Force of a Spring
F=-kx (k=spring constant)
Spring Potential
PE=1/2kx^2
Period of a Spring
T=2pi*sqrt(m/k)
Period of a Pendulum
T=2pi*sqrt(l/g)
Period of a Wave
T=1/f
Gravitational Force
-Gm1m2/r^2 (G=universal gravitational constant)
Gravitational Potential
-Gm1m2/r
Electrical Force
F=Kq1q2/r^2 (K=Coulomb's Constant)
Electric Field
E=F/q
Electric Potential Energy
PE=qV=Kq1q2/r
Voltage or Electric Potential or Potential difference
V=PE/q=Kq/r
Capacitance
C=Q/V
Parallel Plate Capacitor
C=E.A/d (E.=permittivity of space)
Capacitance Potential Energy
KE=1/2QV=1/2CV^2
Average Current
I=^Q/^t
Resistance
R=pl/A (p=resistivity)
Voltage
V=IR
Power
P=IV=I^2R
Parallel Capacitors
C1+C2+C3=C
Series Capacitors
1/C1+1/C2+1/C3=1/C
Series Resistors
R1+R2+R3=R
Parallel Resistors
1/R1+1/R2+1/R3=1/R
Magnetic Force
F=qvBsinO
Magnetic Force
F=BILsinO
Magnetic Field
B=u./2pi*I/r (u.=permeability of space)
Magnetic Flux
flux=BAcosO
average EMF
e=-^flux/^t
Motional EMF
e=Blv
end of
elec and mag
Pressure
P=P.+pgh (p=density, h=depth)
Buoyant Force
F=pVg
Fluid Conservation
A1V1=A2V2
Bernouli's Principle
P+pgy+1/2pv^2=constant
Linear Expansion
^L=aL.^T (a=coefficient of linear expansion, T=temp)
Rate of Heat Transfer
H=kA^T/Th (k=thermal conductivity, Th=thickness)
Pressure
P=F/A
Ideal Gas Law
PV=nRT=NkT (n=#moles, N=#molec, R=univ. gas const, k=boltzmann's const.)
Average Molecular Kinetic Energy
KE=3/2kT
Root-mean-square velocity
v=sqrt(3RT/M)=sqrt(3kT/u) (M=molar mass, u= mass of molec)
Fluid Work
W=-P^V
Change in Internal Energy
^U=Q+W (Q=heat)
Efficiency
e=abs(W/Qh)
Carnot Efficiency
e=Th-Tc/Th (Th=temp of hot reservoir)
end of
thermo and fluids
energy
E=hf=pc (h=planck's const, f=freq, p=momentum)
Maximum Kinetic Energy
KE=hf-& (&=work function)
wavelength
\=h/p
Change in Energy
^E=(^m)c^2
speed of a wave
v=f\
index of refraction
n=c/v
Snell's Law
n1sinO1=n2sinO2
Critical Angle
sinO=n2/n1
mirror equation
1/q+1/p=1/f (f=focal length)
magnification
M=hi/ho=-q/p
focal length
f=R/2 (R=radius of curvature)
slit interference
dsinO=m\ (d=separation)
diffraction displacement
y=m\L/d