Space Travel And Black Holes

2059 Words 9 Pages
“Who are we? We find that we live on an insignificant planet of a humdrum star lost in a galaxy tucked away in some forgotten corner of a universe in which there are far more galaxies than people.” Carl Sagan was the man who had once spoke this quote. If we take time to look at the big picture, the human race and the Earth we inhabit really is insignificant when it comes to the whole scheme of the universe. This is one of the reasons why so many people wish time travel and travelling to other universes were possible. We wish to figure out the universe in entirety, and we want to know if we’re alone or if there’s more than our version of “life.” Currently, time travel and travelling to other universes is nothing more than fiction that movies …show more content…
Black holes are thought to be born from stars or other massive objects that collapse from their own gravity to form an object whose density is infinite. Once all the dying stars’ fuel for nuclear burning has run out, what’s life is the core; In a black hole, otherwise known as a singularity. The space surrounding the singularity, where the escape velocity must be equivalent to the speed of light is what’s called the event horizon; or “the point of no return.” (Seidel). Speculation of black holes has dated back as early as 1783 when John Michell theorized that there might be an object massive enough to have an escape velocity greater than the speed of light. Simon Pierre LaPlace theorized not long afterwards that it is possible that the largest luminous bodies in the universe would be invisible (Is a Black Hole Really A Hole?). Black holes really came to light, though, after Albert Einstein developed and published his theory of relativity in 1915, in which he predicted space time curvature; going against Newtonian physics, which stated that all things in space travelled a straight line unless acted …show more content…
His concept hinges on neutron stars, which are massive collapsed stars the size of Manhattan but with the mass greater than that of Earth’s sun (Kaku). Kerr postulated that if these dying stars collapsed into a rotating ring of neutron stars, their force would prevent them from combining into a singularity. Since this black hole wouldn’t have a singularity, Kerr believed it would be safe to enter without the fear of the infinite gravitational force pulling and stretching you until you were ripped to shreds. Because of this reason, this is the only type of black hole that is used when the theoretical discussion of time travel arises (Bonsor and

Related Documents