P5 Explain The Concept Of Homeostasis

2596 Words 11 Pages
Register to read the introduction… Basically deviation produces a negative response to counteract or nullify the deviation. it is a 'feeding back' of the disturbance to the status quo. due to the liver being part of the digestive system, as we know when blood glucose levels fall, the liver glycogen is converted into glucose in order to top up those crucial energy levels in cells. this is an example of a negative feedback …show more content…
"Homeostasis" means balance or equilibrium. How your body works to maintain equilibrium is reflected in how your vital signs vary with activity. Heart rate, blood pressure and respiration are lowest during periods of rest and sleep. During exercise, blood pressure, pulse and respiration increase to meet the increased demand for oxygen and nutrients by your musculoskeletal system. The adjustment of vital signs to match your body's level of physical activity is an example of homeostasis in action.

As a small group of the class, we were put together to test one person's heart rate, temperate and breathing rate of the group. By this the subject (person doing the test and being monitored on) would be doing the harvard step test. The harvard step test was simple and effective to do to find out the heart rate, breathing rate and body temperature. In the small groups, we decided to do the experiment on stairs so the subject would simply step up one step and then step down again, and they would repeatively do this for 5 minutes, rest for 5 and then do it again another 2 times. The others in the group would be getting ready to take the
…show more content…
During exercise it is obvious to state that when someone who is exercising and out of breathe their oxygen levels decrease and their carbon dioxide levels increase and the body temperature also increases.
Maintaining body temperature
The hypothalamus is the processing centre in the brain that controls body temperature. It does this by triggering changes to effectors, such as sweat glands and muscles controlling body hair. Heat stroke can happen when the body becomes too hot; and hypothermia when the body becomes too cold.
Temperature control is the process of keeping the body at a constant temperature of 37°C.
Our body can only stay at a constant temperature if the heat we generate is balanced and equal to the heat we lose.

Temperature receptors in the skin detect changes in the external temperature. They pass this information to the processing centre in the brain, called the hypothalamus.
The processing centre also has temperature receptors to detect changes in the temperature of the blood. The processing centre automatically triggers changes to the effectors to ensure our body temperature remains constant, at 37°C. The effectors are sweat glands and

Related Documents