Essay on Discussion and Conclusion: Preparation of 1-Bromobutane

1049 Words Mar 13th, 2014 5 Pages
Discussion and Conclusion: Preparation of 1-Bromobutane
The purpose of this experiment was to demonstrate the conversion of a primary alcohol, 1-butanol, to a primary bromoalkane, 1-bromobutane, a SN2 reaction.
The conversion of 1-butanol to 1-bromobutane relies on sulfuric acid which plays two important roles. First, it protonates the alcohol of 1-butanol to form an oxonium ion which is a good leaving group. Secondly, it produces the hydrobromic acid, the nucleophile, which attacks 1-butanol causing the oxonium ion to leave and forming 1-bromobutane. However, using sulfuric acid in this experiment has several downsides. First, it poses a huge safety hazard as it can cause severe burns. Secondly, it reacts exothermically, which was
…show more content…
The graph is split into a functional group region and a fingerprint region. The functional group region shows the peaks based on the types of bonds present. The infrared spectroscopy of 1-bromobutane should have a large carbon-hydrogen peak which absorbs at approximately 3000 cm-1 and a medium carbon-bromine peak which absorbs at 500 cm-1. However, due to the limitations of the infrared spectroscopy machine, a carbon-bromine peak should not be detected because the machine is not accurate at infrared ranges below 600 cm-1. As a result, relying simply on a carbon-hydrogen peak is not a reliable way to determine if the product is actually 1-bromobutane. This is where the fingerprint region comes in handy. The fingerprint region relies on the fact that the all the bonds affect each other’s absorbency. This means that no two molecules will have the same fingerprint region and any molecule can be compared to known infrared spectroscopies. The infrared spectroscopy produced by the product of this experiment fit the criteria of 1-bromobutane. There was a large peak at approximately 3000 cm-1 which indicated that there were many carbon-hydrogen bonds that 1-bromobutane has. The fingerprint region of the graph also matched a known infrared spectroscopy of 1-bromobutane quite well too. There were peaks of approximately the same length and absorbencies that matched the known 1-bromobutane infrared spectroscopy. The

Related Documents