Crowdfunding Essay

20707 Words Nov 2nd, 2014 83 Pages
SOME PRACTICAL GUIDANCE FOR THE IMPLEMENTATION OF PROPENSITY SCORE MATCHING
Marco Caliendo IZA, Bonn Sabine Kopeinig University of Cologne
Abstract. Propensity score matching (PSM) has become a popular approach to estimate causal treatment effects. It is widely applied when evaluating labour market policies, but empirical examples can be found in very diverse fields of study. Once the researcher has decided to use PSM, he is confronted with a lot of questions regarding its implementation. To begin with, a first decision has to be made concerning the estimation of the propensity score. Following that one has to decide which matching algorithm to choose and determine the region of common support. Subsequently, the matching quality has to
…show more content…
Hitt and Frei (2002) analyse the effect of online banking on the profitability of customers. Davies and Kim (2003) compare
Journal of Economic Surveys (2008) Vol. 22, No. 1, pp. 31–72 C 2008 The Authors. Journal compilation C 2008 Blackwell Publishing Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA.

32

CALIENDO AND KOPEINIG

the effect on the percentage bid–ask spread of Canadian firms being interlisted on a US Exchange, whereas Brand and Halaby (2006) analyse the effect of elite college attendance on career outcomes. Ham et al. (2004) study the effect of a migration decision on the wage growth of young men and Bryson (2002) analyses the effect of union membership on wages of employees. Every microeconometric evaluation study has to overcome the fundamental evaluation problem and address the possible occurrence of selection bias. The first problem arises because we would like to know the difference between the participants’ outcome with and without treatment. Clearly, we cannot observe both outcomes for the same individual at the same time. Taking the mean outcome of nonparticipants as an approximation is not advisable, since participants and nonparticipants usually differ even in the absence of treatment. This problem is known as selection bias and a good example is the case where high-skilled individuals have a higher probability of entering a training programme and also

Related Documents