• Shuffle
    Toggle On
    Toggle Off
  • Alphabetize
    Toggle On
    Toggle Off
  • Front First
    Toggle On
    Toggle Off
  • Both Sides
    Toggle On
    Toggle Off
  • Read
    Toggle On
    Toggle Off
Reading...
Front

Card Range To Study

through

image

Play button

image

Play button

image

Progress

1/69

Click to flip

Use LEFT and RIGHT arrow keys to navigate between flashcards;

Use UP and DOWN arrow keys to flip the card;

H to show hint;

A reads text to speech;

69 Cards in this Set

  • Front
  • Back
Substitutive Method for naming Alcohols
base=longest chain w/ OH
OH gets lowest possible #
name ends in "ol" ("anol")
precede name w/ OH locant # (unless number is 1)

DOES NOT INCLUDE HYDROXY
Molecularity
# of species involved in a chemical reaction on the reactant side
Major Reaction Types
Substitution
Elimination
Addition
Rearrangement
Polycyclic (Bridged/Fused) Nomenclature
# rings = # bond cleavages that must be broken to open ring to non-cyclic (bicyclic, tricyclic...)
1. base name is by total #carbons
2. bracket the numbers of the carbons connecting the bridge heads (don't count bridge heads) from high to low
3. ___cyclo[#.#.#]basename
Polycyclic (Spiro) Nomenclature
1. base name is total #carbons
2. bracket (lowest to highest) the number of carbons connecting spiro carbon along each pathway (don't count spiro carbon)
3. spiro[#.#]basename
Base name when rings and chains are present in the same molecule
base is largest component
(if same size, either is acceptable)
Complex Alkyl Nomenclature
name as normal with locant numbers, end in -yl and place in ( )
-CN
cyano
-NH2
amino
-NO2
nitro
isomers
conformational - isomers that can be interconverted by bond rotations
stereo - differ in spatial arrangement, CANNOT be interconverted by bond rotations
constitutional - differ in bonding patters of atoms
C=O
carbonyl
Bases for Dehydrohalogenation
weak--E1
strong--E2
Cahn-Ingold-Prelog Priority System
determines priority and relationships for substituents by atomic number (higher number, higher priority)
cis - Z
trans - E
vinyl
-CH=CH2
allyl
-CH2CH=CH2
isopropenyl
CH3
|
-C=CH2
Ar-alkyl in NMR
slightly broadened singlet
5 hydrogen integration
X-Ar-X
equivalent H singlet
4 hydrogen integration
X-Ar-Y
two sets of two '||'
4 hydrogen integration
Z
|
Ar-C=O
two complex multiplets
2:3 hydrogen integration
2 @ higher ppm
Strong Bases
metal alkoxides
RO(n)M(p) + HA -> ROH + MA
Weak Bases
alcohols
ROH + MA -> RO(p)H2 + A(n)
Rearrangements
hydride shifts
methyl shifts
ring contractions
ring expansions
Alkynes in IR
if symmetric, triple bond will not show up on the IR spectrum
Equivalent hydrogens in NMR
do not split each other, even if on adjacent carbons
Synthesis of alkenes
Elimination
Dehydration
Dehydrohalogenation
Zaitsev's Rule
when multiple alkene products are formed, major is the most alkyl substituted
Determining Major Products
1. more stable carbocation
2. Zaitsev's Rule
3. largest groups trans (E)
Hydrogenation of Alkenes
H2
----->
M (M=Pt,Pd,Ni)

Adds H and H
syn addition to least sterically hindered face
Hydrohalogenation of Alkenes
HX (X=Cl,Br,I)
---->

Adds H and X
Markovnikov
syn/anti random
Hydration of Alkenes
H2SO4
------->
H2O

Adds H and OH
Markovnikov
syn/anti random
Free Radical Addition of HBR to Alkenes
HBR
------>
ROOR/hv

Adds H and Br
Anti-Markovnikov
no rearrangements
Hydroboration-Oxidation of Alkenes
1.)B2H6
------------>
2.)H2O2/NaOH

Adds H and OH
Anti-Markovnikov
syn addition
Halogenation (X and X) of Alkenes
X2 (X=Cl,Br)
---->

Adds X and X
anti addition
no rearrangements
Halogenation (X and OH) of Alkenes
X2 (X=Cl,Br)
----->
H2O

Adds X and OH
anti addition,OH on more stable
no rearrangements
Epoxidation of Alkenes
RCO3H
------->
o
Adds /_\
syn addition
no rearrangements
Ozonolysis of Alkenes
1.)O3
------->
2.)H2O,H2O/Zn,Me2S

breaks bonds
converts to carbonyls
aldehyde products use Me2S or H2O/Zn to keep as aldehydes
use H2O to convert aldehyde to carboxylic acid
Dehydration to synthesize Alkenes
H2SO4,H3PO4,KHSO4
------------------>

uses acids
Dehydrohalogenation to synthesize Alkenes
H2O
----->

uses bases
Radical Halogenation of Alkanes
X2 (X=Br,Cl)
------->
heat/light

RH----->RX
involves radicals
Reaction of Alcohols with HX for Alkanes
HX (X=Br,Cl)
----->

ROH----->RX
involves carbocations
Alkylation of Terminal Alkynes
1.)NaNH2,LiR
---------------->
2.)alkyl halide

Adds alkyl group
NaNH2 makes Ammonia biproduct
needs strong base
Sn2 mechanism
limited to methyl/primary alkyl halides
Hydrogenation of Alkynes
H2
----> alkanes
Ni

H2
----------> alkenes
Lindlar Pd

Adds H and H
syn addition
Metal Ammonia Reduction of Alkynes
M (M=Li,Na,K)
----->
NH3(l)

Reduces to trans alkenes
combines ionics and radicals
no rearrangements
Markovnikov Hydrohalogenation of Alkynes
1eq HX
-------> alkenes

Add H and X
anti addition

2eq HX
-------> alkanes

sequential, geminal products
no rearrangements
Anti-Markovnikov Hydrohalogenation of Alkynes
1eq HX
---------> alkenes
ROOR/light

Adds H and X

2eq HX
---------> alkanes
ROOR/light

Adds 2H and 2X
vicinal products
no rearrangements
Hydration of Alkynes
H2SO4
--------->
H2O/HgSO4

keytone products
Markovnikov
no rearrangements
Hydroboration Oxidation of Alkynes
1.)BH3
----------->
2.)H2O/NaOH

Anti-Markovnikov
terminal alkynes=aldehydes
internal alkynes=keytones
no rearrangements
Halogenation of Alkynes
X2 (X=Cl,Br)
------>

Adds X and X
anti addition
transhalide products
no rearrangements
Ozonolysis of Alkynes
1.)O3
------->
2.)H2O

carboxylic acid products
no rearrangements
Allylic Halogenation
X2 (X=Cl,Br)
------->
NXS (NCS,NBS)

NCS/NBS used so dihalides don't form
Benzylic Halogenation
X2 (X=Cl,Br)
---------->
NCS,NBS/hv

Adds X to benzylic carbocation
Benzylic Sn1 Reactions
EtOH
------>
/\

easier and faster than allylic Sn1 reactions
Benzylic Elimination Reactions
NaOMe
------->
MeOH

most stable double bond is conjugated with ring, if possible
Benzylic Electrophilic Addition
HBr
----->

Adds Br to benzylic carbon

HBr
------>
ROOR

Adds H to benzylic carbon
Oxidation of Alkyl Side Chains
Na2Cr2O7 or KMnO4
--------> ------>

turns any alkyl group with at least one benzylic hydrogen to carboxylic acid functional group
Electrophilic Aromatic Substitution
1.) E
------->
2.)base

electrophile substitutes for one ring hydrogen
Nitration of Benzene
H2SO4
------->
HNO3

substitutes ring hydrogen with NO2
Sulfonation of Benzene
H2SO4
------->

substitutes ring hydrogen with SO3H
Halogenation of Benzene
X2 (X=Cl,Br)
-------->
AlCl3,FeBr3

substitutes ring hydrogen with X
Friedal Crafts Alkylation
adds alkyl group

RX
--------->
AlCl3,FeBr3,ZnCl3

ROH
-------->
BF3

alkene
--------->
H2SO4
Friedal Crafts Acylation
keytone products

Cl
|
R-C=O
-------->
AlCl3

no rearrangements
Clemmensen Reduction
Zn(Hg)
-------->
HCl

removes =0 after F.C. acylation
Wolff-Kishner Reduction
H2NNH2
--------->
KOH/heat

removes =O after F.C. acylation
Activating o/p directors
-NH2 -NHR -NR2 -OH
-OR -R -Ar -C=C

R R R
| | |
-N-C=O -N-C=O -O-C=O
| |
H R
Deactivating Meta Directors
-NO2 -CF3 -SO3H

Y
|
-C=O -C(triplebond)N
Deactivating o/p directors
-X -CH2X
Ring Formation via F.C. Reactions
intramolecular

AlCl3
------->
high
dilution