• Shuffle
    Toggle On
    Toggle Off
  • Alphabetize
    Toggle On
    Toggle Off
  • Front First
    Toggle On
    Toggle Off
  • Both Sides
    Toggle On
    Toggle Off
  • Read
    Toggle On
    Toggle Off
Reading...
Front

Card Range To Study

through

image

Play button

image

Play button

image

Progress

1/123

Click to flip

Use LEFT and RIGHT arrow keys to navigate between flashcards;

Use UP and DOWN arrow keys to flip the card;

H to show hint;

A reads text to speech;

123 Cards in this Set

  • Front
  • Back
$V_f, V_0, a, t$
B field due to a straight wire
$ B=\frac{\mu_0i}{2\pi r} $
Speed of a wave
$ V=f\lambda $
Shear
$ \frac{x {(lateral_{movement})}}{h (height)} $
wavenumber
$ k=\frac{2\pi}{\lambda} $
Sound intensity
$ I=\frac{Power}{A} $ $W/{m^2} $
Doppler effect definition
The difference between the perceived frequency & the actual frequency of a sound
Open pipe wavelength
$ \lambda = \frac{2L}{n} $
n = positive integer
Audible wave range
20 Hz-20,000 Hz
Closed pipe wavelength
$ \lambda = \frac{4L}{n} n=odd integer $
Angular frequency for a pendulum
$ \omega = 2\pi f = \sqrt{g\over L} $
Efficiency
$\eta={W_{out} \over W_{in}}$
Sound level
$ \beta = 10 log (\frac{I}{I_0})$ db
Speed of sound at
0$^o$C
331 $m/s $
Doppler effect equation
$ f'=f[\frac{v \pm v_D}{v \mp v_S}]$
$v_D$ = speed of detector
$v_S$ = speed of source
Infrasonic wave range
< 20 Hz
d, V, t
U of a spring
$ U= \frac{1}{2}kx^2 $
Units of frequency
($f$)
$ Hz (1/_s) $
h, V, g
Centripetal acceleration
$\Delta X, V_f, V_0, a$
Force due to kinetic friction
$f_k=\mu_kF_n$
Frequency vs. period
$ f={1\over T} $
Pressure
$ P = \frac{F}{A} $
Angular frequency
$ \omega = 2\pi f $
Mirror positive signs
In front
Concave
Upright
Units of angular frequency ($\omega$)
$ {radians}/_{second} $
Force due to a point charge
$ F=k{q_1q_2 \over r^2} $
Critical velocity
$ V_c=\frac{N_R \nu}{\rho D} $
Pascal's principle (Pressure)
$ P$=$\frac{F_1}{A_1}$=$\frac{F_2}{A_2}=const $
Pascal's principle (Work)
$ W$=$F_1d_1$=$F_2d_2$
$=const $
Ray diagram
1) $\rightarrow \swarrow f$
2) $\searrow f \leftarrow$
Youngs modulus
$ Y=\frac{F/A}{\Delta L/L} $
$\lambda$
wavelength
Impulse
$I=F_{avg}\Delta t$
$=m\Delta v$
Kinetic energy
$KE={1\over 2}mv^2$
Magnification
$ m=-\frac{i}{o} $
Lense positive signs
i & o on opposite sides
$f$: converging
m: i upright
Virtual image
When the light only appears to converge at the image
Convex
Outside of a sphere $\rightarrow ( $
Snell's law (Law of refraction)
$ n_1 sin\theta_1 = n_2 sin\theta_2 $
Converging mirror
Concave mirror
Concave
Inside of a sphere $\rightarrow )$
Radius of curvature (r)
Distance to the center of curvature
$1\over6$
0.17
$1\over7$
0.14
$1\over8$
0.125
$1\over11$
0.09
Force on a charge due to an E field
$ F=q_0E $
Magnitude of electric dipole
$ p=qd $
Electric potential between 2 charges
$ V=k\frac{q}{r} $
Mechanical advantage
$F_{out} \over F_{in}$
$W_{net}$
$W_{net}=\Delta KE$
Force on a charge in a B field
$ F=qvB sin\theta $
Equation of a wave
$ y=Y\sin(kx-\omega t)$
Y = amplitude
k = wavenumber
Constructive interference
-Waves are in phase -amplitudes add
Electric potential Energy between 2 charges
$ U=k\frac{q_1q_2}{r} $
Lensemaker's equation
$ \frac{1}{f}=$(n-1)$\lgroup \frac{1}{r_1}-\frac{1}{r_2}\rgroup $
Diverging mirror
Convex mirror
Total internal reflection
$ \theta > \theta_c $
Lenses in contact
$ \frac{1}{f_{tot}} = \sum \frac{1}{f_n} $
Minima of interference
$ d sin\theta = (m+\frac{1}{2}) \lambda $
Lense power
$ P=\frac{1}{f} $
Refraction index
$ n=\frac{c}{v} $
Speed of light (equation)
$ c=f\lambda $
Real image
When the light actually converges at the image
Image distance relationships:
o = object distance
i = image distance
$ \frac{1}{o} + \frac{1}{i} = \frac{1}{f} $
Focal length ($f$)
$ f=\frac{r}{2} $
Diverging lense
Skinny lense
Diverging mirror image types
$ V \uparrow r $
Concave mirror image types
$ C-F \Rightarrow R\downarrow m$
$ F \Rightarrow$ no image
$< C \Rightarrow R\uparrow m $
Center of curvature (C)
Point at the center of the mirror's "sphere"
Work (fluids)
$ W=P \Delta V$
$\Delta X, V_0, a, t$
Total Energy
E = U + K
E field due to a charge
$ E=k{q\over r^2} $
Static friction force
$F_s \leq \mu_sF_n$
Reference Sound intensity
$ I_0=10^{-12} $
E field due to a dipole
$ E=\frac{1}{4 \pi \epsilon_0} \frac{p}{r^3} $
Ultrasonic wave range
> 20,000 Hz
Electric poteltial due to a dipole
$ V=(k \frac{qd}{r^2})(cos\theta) $
Change in sound level
$ \beta_f = \beta_i + 10 log (\frac{I_f}{I_i}) db $
Torque on a dipole due to an E field
$ \tau = pE sin\theta $
Hooke's Law
$ F=-kx $
Completely Elastic / Inelastic
$\sum m_iV_i = \sum m_fV_f$
Destructive interference
-Waves are out of phase -amplitudes subtract
$\sum KE_i = \sum KE_f$
Completely Elastic Only
B field due to a circular loop of wire
$ B=\frac{\mu_0i}{2 r} $
Power
(Work)
$P= {W\over t}$
Force on an object normal to an inclined plane
Force on an object in the direction of an inclined plane
Work equation based on F
Torque equation
$\tau = Fr$ $sin(\theta)$
Momentum
$p=mv$
Force on a wire
$ F=iLB sin\theta $
Power
(Energy)
Law of reflection
$ \theta_1=\theta_2 $
Power
(Force)
Pascal's principle (Volume)
$ V$=$A_1d_1$=$A_2d_2$
=$const$
Centripetal force
Total work when no heat is gained or lost
Gravitational force between 2 objects
Gauge pressure
$ P_G = P-P_{atm} $
Gravitational potential energy
Beat frequency
$ f_{beat}=\abs{f_1-f_2} \lvert \rvert $
$V_{avg}$
Elastic potential energy
Newton's second law
Location of fringes
$a sin\theta = n\lambda$
a=slit width
$\theta$=lense center $\rightarrow$ dark fringe
Shear modulus
$ S=\frac{F/A}{x/h} $
Bernouli's equation
$ P_1$+$\frac{\rho v_1^2}{2} $+$ \rho g y_1$=const
Bouyant force
$ F_{bou}=V_{disp} \rho_{fluid} g $
Maxima of interference
$ d sin\theta = m\lambda $
Bulk modulus
$ B=\frac{F/A}{\Delta V/V} $
Viscosity units
$ N\centerdot s/m^2 $
Continuity equation
$ V_1A_1=const $
Converging lense
Fat lense
Density
$ \rho=\frac{m}{V} $
Strain
$ L\over {\Delta L} $
Stress
$ F\over A $
Critical angle
$ sin\theta_c = \frac{n_1}{n_2} $
Absolute pressure
$ P=P_0 + \rho g h$ $P_0$=Pressure at surface