• Shuffle
    Toggle On
    Toggle Off
  • Alphabetize
    Toggle On
    Toggle Off
  • Front First
    Toggle On
    Toggle Off
  • Both Sides
    Toggle On
    Toggle Off
  • Read
    Toggle On
    Toggle Off
Reading...
Front

Card Range To Study

through

image

Play button

image

Play button

image

Progress

1/20

Click to flip

Use LEFT and RIGHT arrow keys to navigate between flashcards;

Use UP and DOWN arrow keys to flip the card;

H to show hint;

A reads text to speech;

20 Cards in this Set

  • Front
  • Back
  • 3rd side (hint)
Benjamin Franklin
The printer Benjamin Franklin contributed greatly to waste reduction thinking
Most of the basic goals of lean manufacturing are common sense, and documented examples can be seen as early as Benjamin Franklin. Poor Richard's Almanack says of wasted time, "He that idly loses 5s. worth of time, loses 5s., and might as prudently throw 5s. into the river." He added that avoiding unnecessary costs could be more profitable than increasing sales: "A penny saved is two pence clear. A pin a-day is a groat a-year. Save and have."

Again Franklin's The Way to Wealth says the following about carrying unnecessary inventory. "You call them goods; but, if you do not take care, they will prove evils to some of you. You expect they will be sold cheap, and, perhaps, they may [be bought] for less than they cost; but, if you have no occasion for them, they must be dear to you. Remember what Poor Richard says, 'Buy what thou hast no need of, and ere long thou shalt sell thy necessaries.' In another place he says, 'Many have been ruined by buying good penny worths'." Henry Ford cited Franklin as a major influence on his own business practices, which included Just-in-time manufacturing.
Henry Ford
Ford gets the ball rolling
Henry Ford continued this focus on waste while developing his mass assembly manufacturing system. Charles Buxton Going wrote in 1915:

Ford's success has startled the country, almost the world, financially, industrially, mechanically. It exhibits in higher degree than most persons would have thought possible the seemingly contradictory requirements of true efficiency, which are: constant increase of quality, great increase of pay to the workers, repeated reduction in cost to the consumer. And with these appears, as at once cause and effect, an absolutely incredible enlargement of output reaching something like one hundredfold in less than ten years, and an enormous profit to the manufacturer.[11]
Ford, in My Life and Work (1922),[12] provided a single-paragraph description that encompasses the entire concept of waste:

I believe that the average farmer puts to a really useful purpose only about 5% of the energy he expends.... Not only is everything done by hand, but seldom is a thought given to a logical arrangement. A farmer doing his chores will walk up and down a rickety ladder a dozen times. He will carry water for years instead of putting in a few lengths of pipe. His whole idea, when there is extra work to do, is to hire extra men. He thinks of putting money into improvements as an expense.... It is waste motion— waste effort— that makes farm prices high and profits low.
Poor arrangement of the workplace—a major focus of the modern kaizen—and doing a job inefficiently out of habit—are major forms of waste even in modern workplaces.

Ford also pointed out how easy it was to overlook material waste. A former employee, Harry Bennett, wrote:

One day when Mr. Ford and I were together he spotted some rust in the slag that ballasted the right of way of the D. T. & I [railroad]. This slag had been dumped there from our own furnaces. 'You know,' Mr. Ford said to me, 'there's iron in that slag. You make the crane crews who put it out there sort it over, and take it back to the plant.'[13]
In other words, Ford saw the rust and realized that the steel plant was not recovering all of the iron.

Ford's early success, however, was not sustainable. As James P. Womack and Daniel Jones pointed out in "Lean Thinking", what Ford accomplished represented the "special case" rather than a robust lean solution.[14] The major challenge that Ford faced was that his methods were built for a steady-state environment, rather than for the dynamic conditions firms increasingly face today.[15] Although his rigid, top-down controls made it possible to hold variation in work activities down to very low levels, his approach did not respond well to uncertain, dynamic business conditions; they responded particularly badly to the need for new product innovation. This was made clear by Ford's precipitous decline when the company was forced to finally introduce a follow-on to the Model T (see Lean Dynamics).

Design for Manufacture (DFM) also is a Ford concept. Ford said in My Life and Work (the same reference describes just in time manufacturing very explicitly):

...entirely useless parts [may be]—a shoe, a dress, a house, a piece of machinery, a railroad, a steamship, an airplane. As we cut out useless parts and simplify necessary ones, we also cut down the cost of making. ... But also it is to be remembered that all the parts are designed so that they can be most easily made.
This standardization of parts was central to Ford's concept of mass production, and the manufacturing "tolerances", or upper and lower dimensional limits that ensured interchangeability of parts became widely applied across manufacturing. Decades later, the renowned Japanese quality guru, Genichi Taguchi, demonstrated that this "goal post" method of measuring was inadequate. He showed that "loss" in capabilities did not begin only after exceeding these tolerances, but increased as described by the Taguchi Loss Function at any condition exceeding the nominal condition. This became an important part of W. Edwards Deming's quality movement of the 1980s, later helping to develop improved understanding of key areas of focus such as cycle time variation in improving manufacturing quality and efficiencies in aerospace and other industries.

While Ford is renowned for his production line it is often not recognized how much effort he put into removing the fitters' work to make the production line possible. Until Ford, a car's components always had to be fitted or reshaped by a skilled engineer at the point of use, so that they would connect properly. By enforcing very strict specification and quality criteria on component manufacture, he eliminated this work almost entirely, reducing manufacturing effort by between 60-90%.[16]However, Ford's mass production system failed to incorporate the notion of "pull production" and thus often suffered from over-production.
Frank Gilbreth
The concept of waste being built into jobs and then taken for granted was noticed by motion efficiency expert Frank Gilbreth, who saw that masons bent over to pick up bricks from the ground. The bricklayer was therefore lowering and raising his entire upper body to pick up a 2.3 kg (5 lb.) brick, and this inefficiency had been built into the job through long practice. Introduction of a non-stooping scaffold, which delivered the bricks at waist level, allowed masons to work about three times as quickly, and with less effort.
Frederick Winslow Taylor
Frederick Winslow Taylor, the father of scientific management, introduced what are now called standardization and best practice deployment. In his Principles of Scientific Management, (1911), Taylor said: "And whenever a workman proposes an improvement, it should be the policy of the management to make a careful analysis of the new method, and if necessary conduct a series of experiments to determine accurately the relative merit of the new suggestion and of the old standard. And whenever the new method is found to be markedly superior to the old, it should be adopted as the standard for the whole establishment."

Taylor also warned explicitly against cutting piece rates (or, by implication, cutting wages or discharging workers) when efficiency improvements reduce the need for raw labor: "...after a workman has had the price per piece of the work he is doing lowered two or three times as a result of his having worked harder and increased his output, he is likely entirely to lose sight of his employer's side of the case and become imbued with a grim determination to have no more cuts if soldiering [marking time, just doing what he is told] can prevent it."

Frederick W. Taylor began to look at individual workers and work methods. The result was Time Study and standardized work. He called his ideas Scientific Management. Taylor was a  controversial figure. The concept of applying science to management was sound but Taylor simply ignored the behavioral sciences. In addition, he had a peculiar attitude towards factory workers.

As products moved from one discrete process to the next through the logistics system and within factories, few people concerned themselves with:

What happened between processes

How multiple processes were arranged within the factory

How the chain of processes functioned as a system. 

How each worker went about a task

Frederick W. Taylor

Originator of Scientific Management.

This changed in the late 1890's with the work of early Industrial Engineers. 
Frank Bunker Gilbreth, Sr.
Frank Bunker Gilbreth, Sr. established the fundamentals for predetermined motion time system, used in systems like Methods-time measurement or similar.
Shigeo Shingo
Shigeo Shingo developed lean concepts such as Single Minute Exchange of Die (SMED) or reduced set-up times instead of increased batch sizes, as well as Poka-Yoke (mistake proofing) to eliminate obvious opportunities for mistakes.  He also worked with Taiichi Ohno to refine Just-In-Time (JIT) manufacturing into an integrated manufacturing strategy, which is widely used to define the lean manufacturing used in the Toyota production system (TPS).

Although the elimination of waste may seem like a simple and clear subject it is noticeable that waste is often very conservatively identified. This then hugely reduces the potential of such an aim. The elimination of waste is the goal of lean, and Toyota defined three broad types of waste: muda, muri and mura; it should be noted that for many lean implementations this list shrinks to the first waste type only with reduced corresponding benefits. To illustrate the state of this thinking Shigeo Shingo observed that only the last turn of a bolt tightens it—the rest is just movement. This ever finer clarification of waste is key to establishing distinctions between value-adding activity, waste and non-value-adding work.[17] Non-value adding work is waste that must be done under the present work conditions. One key is to measure, or estimate, the size of these wastes, to demonstrate the effect of the changes achieved and therefore the movement toward the goal.
Henry Towne
Henry Towne, past President of the American Society of Mechanical Engineers, wrote in the Foreword to Frederick Winslow Taylor's Shop Management (1911), "We are justly proud of the high wage rates which prevail throughout our country, and jealous of any interference with them by the products of the cheaper labor of other countries. To maintain this condition, to strengthen our control of home markets, and, above all, to broaden our opportunities in foreign markets where we must compete with the products of other industrial nations, we should welcome and encourage every influence tending to increase the efficiency of our productive processes."
James P. Womack
Ford's early success, however, was not sustainable. As James P. Womack and Daniel Jones pointed out in "Lean Thinking", what Ford accomplished represented the "special case" rather than a robust lean solution.[14] The major challenge that Ford faced was that his methods were built for a steady-state environment, rather than for the dynamic conditions firms increasingly face today.[15] Although his rigid, top-down controls made it possible to hold variation in work activities down to very low levels, his approach did not respond well to uncertain, dynamic business conditions; they responded particularly badly to the need for new product innovation. This was made clear by Ford's precipitous decline when the company was forced to finally introduce a follow-on to the Model T (see Lean Dynamics).
Daniel Jones
Ford's early success, however, was not sustainable. As James P. Womack and Daniel Jones pointed out in "Lean Thinking", what Ford accomplished represented the "special case" rather than a robust lean solution.[14] The major challenge that Ford faced was that his methods were built for a steady-state environment, rather than for the dynamic conditions firms increasingly face today.[15] Although his rigid, top-down controls made it possible to hold variation in work activities down to very low levels, his approach did not respond well to uncertain, dynamic business conditions; they responded particularly badly to the need for new product innovation. This was made clear by Ford's precipitous decline when the company was forced to finally introduce a follow-on to the Model T (see Lean Dynamic)
Genichi Taguchi
Dr. Taguchi developed the “Taguchi methodology” of robust design, which focused on making the design less sensitive to variation in the manufacturing process, instead of trying to control manufacturing variation.  This idea of  ”designing in quality” has become an important tenant of six sigma.

Decades later, the renowned Japanese quality guru, Genichi Taguchi, demonstrated that this "goal post" method of measuring was inadequate. He showed that "loss" in capabilities did not begin only after exceeding these tolerances, but increased as described by the Taguchi Loss Function at any condition exceeding the nominal condition. This became an important part of W. Edwards Deming's quality movement of the 1980s, later helping to develop improved understanding of key areas of focus such as cycle time variation in improving manufacturing quality and efficiencies in aerospace and other industries.
Dr. W. Edwards Deming
Dr. Deming developed his complete philosophy of management, which he encapsulated into his “fourteen points” and the “seven deadly diseases of management”.  He advanced the state of quality, originally based on work done by Shewhart with his explanations of variation, use of control charts, and his theories on knowledge, psychology and variation.

Deming greatly helped to focus the responsibility of quality on management and popularized the PDCA cycle, which led to it being referred to as the “Deming Cycle”.

Decades later, the renowned Japanese quality guru, Genichi Taguchi, demonstrated that this "goal post" method of measuring was inadequate. He showed that "loss" in capabilities did not begin only after exceeding these tolerances, but increased as described by the Taguchi Loss Function at any condition exceeding the nominal condition. This became an important part of W. Edwards Deming's quality movement of the 1980s, later helping to develop improved understanding of key areas of focus such as cycle time variation in improving manufacturing quality and efficiencies in aerospace and other industries.
Sakichi Toyoda
Toyota develops TPS

Toyota's development of ideas that later became lean may have started at the turn of the 20th century with Sakichi Toyoda, in a textile factory with looms that stopped themselves when a thread broke. This became the seed of autonomation andJidoka. Toyota's journey with just-in-time (JIT) may have started back in 1934 when it moved from textiles to produce its first car. 
Kiichiro Toyoda
Toyota develops TPS
Toyota's development of ideas that later became lean may have started at the turn of the 20th century with Sakichi Toyoda, in a textile factory with looms that stopped themselves when a thread broke. This became the seed of autonomation andJidoka. Toyota's journey with just-in-time (JIT) may have started back in 1934 when it moved from textiles to produce its first car. Kiichiro Toyoda, founder of Toyota Motor Corporation, directed the engine casting work and discovered many problems in their manufacture. He decided he must stop the repairing of poor quality by intense study of each stage of the process. In 1936, when Toyota won its first truck contract with the Japanese government, his processes hit new problems and he developed the "Kaizen" improvement teams.
Toyota Founder & CEO
Taiichi Ohno
Levels of demand in the Post War economy of Japan were low and the focus of mass production on lowest cost per item via economies of scale therefore had little application. Having visited and seen supermarkets in the USA, Taiichi Ohno recognised the scheduling of work should not be driven by sales or production targets but by actual sales. Given the financial situation during this period, over-production had to be avoided and thus the notion of Pull (build to order rather than target driven Push) came to underpin production scheduling.

It was with Taiichi Ohno at Toyota that these themes came together. He built on the already existing internal schools of thought and spread their breadth and use into what has now become the Toyota Production System (TPS). It is principally from the TPS, but now including many other sources, that lean production is developing. Norman Bodek wrote the following in his foreword to a reprint of Ford's Today andTomorrow:

I was first introduced to the concepts of just-in-time (JIT) and the Toyota production system in 1980. Subsequently I had the opportunity to witness its actual application at Toyota on one of our numerous Japanese study missions. There I met Mr. Taiichi Ohno, the system's creator. When bombarded with questions from our group on what inspired his thinking, he just laughed and said he learned it all from Henry Ford's book." The scale, rigor and continuous learning aspects of TPS have made it a core concept of lean.
Toyota CEO - Toyota Production System ( TPS)
Norman Bodek
Norman Bodek wrote the following in his foreword to a reprint of Ford's Today andTomorrow

I was first introduced to the concepts of just-in-time (JIT) and the Toyota production system in 1980. Subsequently I had the opportunity to witness its actual application at Toyota on one of our numerous Japanese study missions. There I met Mr. Taiichi Ohno, the system's creator. When bombarded with questions from our group on what inspired his thinking, he just laughed and said he learned it all from Henry Ford's book." The scale, rigor and continuous learning aspects of TPS have made it a core concept of lean.
Eli Whitney
The lineage of Lean manufacturing and Just In Time (JIT) Production goes back to Eli Whitney and the concept of interchangeable parts. This article traces the high points of that long history.

Early Developments

Eli Whitney

Originator of interchangeable parts.

Eli Whitney is most famous as the inventor of the cotton gin. However, the gin was a minor accomplishment compared to his perfection of interchangeable parts. Whitney developed this about 1799 when he took a contract from the U.S. Army for the manufacture of 10,000 muskets at the unbelievably low price of $13.40 each.

For the next 100 years manufacturers primarily concerned themselves with individual technologies. During this time our system of engineering drawings developed, modern machine tools were perfected and large scale processes such as the Bessemer process for making steel held the center of attention.

As products moved from one discrete process to the next through the logistics system and within factories, few people concerned themselves with:

What happened between processes

How multiple processes were arranged within the factory

How the chain of processes functioned as a system. 

How each worker went about a task

Frederick W. Taylor

Originator of Scientific Management.

This changed in the late 1890's with the work of early Industrial Engineers. 
Frank & Lillian Gilbreth
Frank Gilbreth (Cheaper By The Dozen) added Motion Study and invented Process Charting. Process charts focused attention on all work elements including those non-value added elements which normally occur between the "official" elements. 

Frank & Lillian Gilbreth

Early Industrial engineers and inventors of Process Charting.

Lillian Gilbreth brought psychology into the mix by studying the motivations of workers and how attitudes affected the outcome of a process. There were, of course, many other contributors. These were the people who originated the idea of "eliminating waste", a key tenet of JIT and Lean Manufacturing.
Charles E. Sorensen
Starting about 1910, Ford and his right-hand-man, Charles E. Sorensen, fashioned the first comprehensive Manufacturing Strategy. They took all the elements of a manufacturing system-- people, machines, tooling, and products-- and arranged them in a continuous system for manufacturing the Model T automobile. Ford was so incredibly successful he quickly became one of the world's richest men and put the world on wheels. Ford is considered by many to be the first practitioner of Just In Time and Lean Manufacturing.
John Krafcik
Starting about 1910, Ford and his right-hand-man,Charles E. Sorensen, fashioned the first comprehensive Manufacturing Strategy. They took all the elements of a manufacturing system-- people, machines, tooling, and products-- and arranged them in a continuous system for manufacturing the Model T automobile. Ford was so incredibly successful he quickly became one of the world's richest men and put the world on wheels. Ford is considered by many to be the first practitioner of Just In Time and Lean Manufacturing.
Dr. Joseph M. Juran
Dr. Juran developed the quality trilogy – quality planning, quality improvement, and quality control.  Quality management plans quality improvements that raise the level of performance, which then must be controlled or sustained at that level in order to start the cycle again.
Pareto Principle 80/20