• Shuffle
    Toggle On
    Toggle Off
  • Alphabetize
    Toggle On
    Toggle Off
  • Front First
    Toggle On
    Toggle Off
  • Both Sides
    Toggle On
    Toggle Off
  • Read
    Toggle On
    Toggle Off
Reading...
Front

Card Range To Study

through

image

Play button

image

Play button

image

Progress

1/89

Click to flip

Use LEFT and RIGHT arrow keys to navigate between flashcards;

Use UP and DOWN arrow keys to flip the card;

H to show hint;

A reads text to speech;

89 Cards in this Set

  • Front
  • Back

Specialized for material exchange with the environment


a. muscle


b. nervous


c. epithelial


d. connective


e. glands

c. epithelial

Includes cardiac, skeletal, and smooth


a. muscle


b. nevous


c. epithelial


d. connective


e. glands

a. muscle

Cells specialized for initiating and transmitting electrical impulses:


a. muscle


b. nervous


c. epithelial


d. connective


e. glands

b. nervous

Forms part of the circulatory system:


a. intracellular fluid


b. extracellular fluid


c. interstitial flid


d. blood plasma


e. plasma membrane

d. blood plasma

Located inside of cells


a. intracellular fluid


b. extracellular fluid


c. insteritial fluid


d. blood plasma


e. plasma membraen

a. intracellular fluid

Skin and related structures protecting the body


a. muscular system


b integumentary system


c. immune system


d. nervous system


e. endocrine system

b. integumentary system

All hormone secreting glands-regulates homeostasis:


a. muscular system


b. integumentary system


c. immune system


d. nervous system


e. endocrine system

e. endocrine system

Contains ribosomes


a. nucleus


b. nucleolus


c. rough endoplasmic reticulum


d. smooth endoplasmic reticulum


e. Gogli complex



c. rough endoplasmic reticulum

Modifies sorts packages and directs protein products to destinations


a. nucleus


b. nucleolus


c. rough endoplasmic reticulum


d. smooth endoplasmic reticulum


e. Gogli complex

e. Golgi complex

Location of DNA


a. nucleus


b. nucleolus


c. rough endoplasmic reticulum


d. smooth endoplasmic reticulum


e. Gogli complex

a. nucleus


Converts chemical energy from food into useable ATM energy


a. Pinocytosis


b. Phagocytosis


c. Lysosomes


d. Peroxisomes


e. Mitochondria

e. mitochondria

Carries out oxidative detoxification reactions:


a. Pinocytosis


b. Phagocytosis


c. Lysosomes


d. Peroxisomes


e. Mitochondria



d. peroxisomes


Process of cell drinking:


a. Pinocytosis


b. Phagocytosis


c. Lysosomes


d. Peroxisomes


e. Mitochondria

a. Pinocytosis

Monomeric hexose sugar molecule utilized by all of earth


a. glucose


b. piruvate


c. acetate


d. oxaloacetate


e. carbon dioxide

a. glucose

Central metabolite enters mitochondria to initiate oxidative metabolism:


a. glucose


b. piruvate


c. acetate


d. oxaloacetate


e. carbon dioxide

b. pyruvate

Ultimate product of respiration:


a. glucose


b. pyrvuate


c. acetate


d. oxaloacetate


e. carbon dioxide

e. carbon dioxide

ATP is generated independent of electron transport:


a. glycolysis


b. NAD


c. FAD


d. substrate level phosphorylation


e. citric acid cycle

d. substrate level phosphorylation

Cofactor carrying most of the reducing equivalents to the electron transport chain:


a. glycolysis


b. NAD


c. FAD


d. substrate level phosphorylation


e. citric acid cycle

b. NAD

Two actin polymers are wound together enabling contractile movement:


a. microtubules


b. microfilaments


c. intermediate filaments


d. dynein


e. vaults

b. microfilaments


Long thick hollow structures serve as highways for vesicle transport


a. microtubules


b. microfilaments


c. intermediate filaments


d. dynein


e. vaults

a microtubules

Forms flexible nonelastic fibers or sheets to provide tensile strength


a. collagen


b. fibronectin


c. desmosomes


d. tight junctions


e. gap junctions

a. collagen

Connexions forms small tunnels enabling free passage of small molecules between cells:


a. collagen


b. fibronectin


c. desmosomes


d. tight junctions


e. gap junctions

e. gap junctions

Act like Velcro to rivet adjacent cells together, especially in stretching tissues:


a. collagen


b. fibronectin


c. desmosomes


d. tight junctions


e. gap junctions

c. desmosomes

Gives the total concentration of all dissolved solutes:


a. isotonic


b. hypotonic


c. hypertonic


d. osmolarity


e. tonicity

d. osmolarity

Solution with an increased concentration of solutes compared to a living cell:


a. isotonic


b. hypotonic


c. hypertonic


d. osmolarity


e. tonicity

c. hypertonic

Solution with a lower concentration of solutes compared to a living cell


a. isotonic


b. hypotonic


c. hypertonic


d. osmolarity


e. tonicity

b. hypotonic

Links solute movement directly to the hydrolysis of ATP:


a. facilitiated diffusion


b. primary active transport


c. secondary active transport


d. symport


e. antiport

b. primary active transport

A driving ion crosses the membrane in the same direction as a different solute:


a. facilitiated diffusion


b. primary active transport


c. secondary active transport


d. symport


e. antiport

d. symport

Corresponds to saturation of a given carrier protein


a. specificity


b. saturation


c. transport maximum


d. competition


e. vesicular transport

c. transport maximum

Each carrier transports a single substance or a group of closely related substances


a. specificity


b. saturation


c. transport maximum


d. competition


e. vesicular transport

a. specificity

Many specific carrier transporter proteins enable high neuronal membrane permeability


a. Na/ K-ATPase pump


b. K ion flow


c. Na ion flow


d. resting neuronal membrane potential


e. protein anions

b. K ion flow

Totally nonpenetrating across the neuronal membrane


a. Na/ K-ATPase pump


b. K ion flow


c. Na ion flow


d. resting neuronal membrane potential


e. protein anions

e. protein anions

Sets up the initial ion gradients required for excitatory cells


a. Na/ K-ATPase pump


b. K ion flow


c. Na ion flow


d. resting neuronal membrane potential


e. protein anions

a. Na/K-ATPase pump

Membrane potential becomes more negative than the resting potential


a. polarization


b. depolarization


c. repolarization


d. hyperpolarization


e. resting potential

d. hyperpolarization

Membrane potential becomes more positive than the resting potential


a. polarization


b. depolarization


c. repolarization


d. hyperpolarization


e. resting potential

b. depolarization

Any membrane state with a non-zero membrane potential


a. polarization


b. depolarization


c. repolarization


d. hyperpolarization


e. resting potential

a. polarization

Electrical conduction in myelinated neuronal fibers


a. absolute refractory period


b. relative refractory period


c. contiguous conduction


d. salutatory conduction


e. action potential

d. salutatory conduction

A greater than normal re-stimulus is required to trigger a response


a. absolute refractory period


b. relative refractory period


c. contiguous conduction


d. salutatory conduction


e. action potential

b. relative refractory period

No re-stimulus is possible regardless of strength


a. absolute refractory period


b. relative refractory period


c. contiguous conduction


d. salutatory conduction


e. action potential

a. absolute refractory period

Forms the myelin sheath in the central nervous system


a. presynaptic period


b. postsynaptic neuron


c. Schawnn cell


d. oligodendrocyte


e. nodes of ranvier

d. oligodendrocyte

Gaps between sections of myelin sheath:


a. presynaptic period


b. postsynaptic neuron


c. Schawnn cell


d. oligodendrocyte


e. nodes of ranvier

e. nodes of ranvier

Presynaptic input occurs so fast that they add together to reach the threshold:


a. excitatory post-synaptic potential(EPSP)


b. inhibitory post-synaptic potential (IPSP)


c. grand post-synaptic potential (GPSP)


d. temporal summation


e. spatial summation

d. temporal summation

A small depolarization that brings the cell closer to the threshold


a. excitatory post-synaptic potential(EPSP)


b. inhibitory post-synaptic potential (IPSP)


c. grand post-synaptic potential (GPSP)


d. temporal summation


e. spatial summation

a. excitatory post-synaptic potential (EPSP)



Long range chemical messages released into the circulation


a. paracrines


b. neurotransmitters


c. hormones


d. neurohormones


e. G-protein coupled receptor (GPCR)

c. hormones

Chemical messages that act locally only on nearby cells


a. paracrines


b. neurotransmitters


c. hormones


d. neurohormones


e. G-protein coupled receptor (GPCR)

a. paracrines

Triggers an intracellular secondary messenger in response to bindting a chemical message:


a. paracrines


b. neurotransmitters


c. hormones


d. neurohormones


e. G-protein coupled receptor (GPCR)

e. G-protein coupled receptor (GPCR)

Examples are acetylcholine, dopamine, epinephrine and serotonin:


a. paracrines


b. neurotransmitters


c. hormones


d. neurohormones


e. G-protein coupled receptor (GPCR)

b. neurotransmitters

A receptor channel binds to an extracellular messenger and opens to trigger ion flow


a. chemically gated receptor channel


b. receptor protein tyrosine kinase


c. G-protein coupled receptor (GPCR)


d. lipophilic hormone receptor


e. none of these

a. chemically gated receptor channel

sex hormones bind directly to intracellular receptors to trigger DNA expression:


a. chemically gated receptor channel


b. receptor protein tyrosine kinase


c. G-protein coupled receptor (GPCR)


d. lipophilic hormone receptor


e. none of these

D. lipophilic hormone receptor

An extracellular receptor binds to an extracellular messenger to dimerize, activate and trigger an intracellular phosphorylation cascade:


a. chemically gated receptor channel


b. receptor protein tyrosine kinase


c. G-protein coupled receptor (GPCR)


d. lipophilic hormone receptor


e. none of these

b. receptor protein tyrosine kinase

Prepares the body for the Fight or Flight response:


a. afferent


b. efferent


c. autonomic


d. sympathetic


e. parasympathetic

d. sympathetic

Prepares the body for the Feed and Breed response:


a. afferent


b. efferent


c. autonomic


d. sympathetic


e. parasympathetic

e. parasympathetic

Typically associated with receptor cells bringing stimulus to the CNS


a. afferent


b. efferent


c. autonomic


d. sympathetic


e. parasympathetic

a. afferent

Physically supports CNS neuronal cells nad forms the Blood-Brain Barrier:


a. neuronal cell


b. astrocytes


c. oligodendrocytes


d. microglial cells


e. ependymal cells

b. astrocytes

Forms the myelin sheath in the CNS


a. neuronal cell


b. astrocyte


c. oligodendrocytes


d. microglial


e. ependymal cells

c. oligodendrocytes

Contains somatosensory system and primary motor areas:


a. cerebral cortex


b. basal nuclei


c. hypothalamus


d. cerebellum


e. brain stem

a. cerebral cortex

Integrating center for homeostatic functions. Links autonomic and endocrine systems:


a. cerebral cortex


b. basal nuclei


c. hypothalamus


d. cerebellum


e. brain stem

c. hypothalamus

Associated with language comprehension-both spoken and written:


a. limbic system


b. primary auditory cortex


c, primary visual cortex


d. Broca's area


e. Wernicke's area

e. Wernicke's area

Controls emotion, basic behavioral patterns, motivation, learning, and memory


a. limbic system


b. primary auditory cortex


c. primary visual cortex


d. Broca's area


e. Wernicke's area

a. limbic system

The "what" type memories processed in the hippocampus


a. short term memory


b. long term memory


c. declarative memory


d. procedural memory


e. consolidation

c. declarative memory

Conversion of short term memory traces into long term memory stores:


a. short term memory


b. long term memory


c. declarative memory


d. procedural memory


e. consolidation

e. consolidation

Pain receptors sensitive to tissue damage or tissue distortion:


a. mechanoreceptors


b. photoreceptors


c. thermoreceptors


d. osmoreceptors


e. nociceptors

e. nociceptors

Detects changes in solute concentration in body fluids:


a. mechanoreceptors


b. photoreceptors


c. thermoreceptors


d. osmoreceptors


e. nociceptors

d. osmoreceptors

Slow adapting encapsulated receptors-respond to pressure and temperature:


a. hair receptors


b. Merkel's disc


c. Pacanian corpuscles


d. Ruffini endings


e. Meissner's corpuscles

b. Merkel's disc

Muscular tissue and changes pupil size:


a. ciliary


b. iris


c. lens


d. retina


e. cornea

b. iris

Muscular tissue changes lens shape and focal length:


a. ciliary body


b. iris


c. lens


d. retina


e. cornea

a. ciliary body

Innermost layer within the retina. Axons form the optic nerve:


a. rods


b. cones


c. bipolar


d. ganglion cells


e. macula lutea

d. ganglion cells

120 million per retina, provides night vision in black and white:


a. rods


b. cones


c. bipolar cells


d. ganglions cells


e. macula lutea

a. rods

Responds to incident light by undergoing a cis to trans conformational change


a. retinal


b. opsin


c. transducin


d. organ of corti


e. basilar membrane

a. retinal

A G-protein in the eye activates in response to stimulation by light reception:


a. retinal


b. opsin


c. transducin


d. organ of corti


e. basilar membrane

c. transducin

forms the hairs of the hair cells within the inner ear.


a. vestibular apparatus


b. utricle and saccule


c. organ of corti


d. cochlea


e. sterocilia

e. sterocilia

Uses otoliths to provide information on head position:


a. vestibular apparatus


b. Utricle and saccule


c. organ of corti


d. cochlea


e. sterocilia

b. Utricle and saccule

Most complex group of receptors responding to a wide variety of tastants:


a. salt


b. sour


c. sweet


d. bitter


e. umami

d. bitter

Only region of the spine where parasympathetic preganglionic fibers arise:


a. cerebrum


b. cervical


c. thoracic


d. lumbar


e. sacral

e. sacral

Blocks acetylcholine release-popular use in cosmetic treatments:


a. black widow spider venom


b. botulinum toxin


c. curare


d. organophosphates


e. Myasthenia gravis

b. botulinum toxin

An autoimmune disease that destroys acetylcholine receptors:


a. black widow spider venom


b. botulinum toxin


c. curare


d. organophosphates


e. myasthenia gravis

e. myasthenia gravis

Binds ATP to form a high energy conformation capable of imparting motion:


a. actin


b. myosin


c. tropomyosin


d. troponin


e. calmodulin

b. mysoin

Binds calcium in both skeletal and cardiac muscle


a. actin


b. myosin


c. tropomyosin


d. troponin


e. calmodulin

d. troponin

Covers actin sites blocking cross-bridge binding


a. actin


b. myosin


c. tropomyosin


d. troponin


e. calmodulin

c. tropomyosin

Binds calcium in smooth muscle leading to the phosphorylation of myosin


a. actin


b. myosin


c. tropomyosin


d. troponin


e. calmodulin

e. calmodulin

Breaks down neurotransmitter at the neuromuscular junction to halt further contraction:


a. neuromuscular junction


b. motor end plate


c. transverse (T) tubulues


d. sarcoplasmic reticulum


e. acetylcholine esterase

e. acetylcholine esterase

Intracellular storage of calcium released during myocyte stimulation:


a. neuromuscular junction


b. motor end plate


c. transverse (T) tubulues


d. sarcoplasmic reticulum


e. acetylcholine esterase

d. sarcoplasmic reticulum

Delivers action potentials perpendicularly down to the central muscle tissue:


a. neuromuscular junction


b. motor end plate


c. transverse (T) tubulues


d. sarcoplasmic reticulum


e. acetylcholine esterase

c. transverse (T) tubules

Smooth sustained contraction at maximum strength:


a. isotonic


b. isokinetic


c. isometric


d. tetanus


e. optimal muscle length

d. tetanus

Muscle length remains constant as tension increases:


a. isotonic


b. isokinetic


c. isometric


d. tetanus


e. optimal muscle length

c. isometric

Provides a rapid quick energy source for less than 1 minute in skeletal muscle:


a. free fatty acids


b. glycogen


c. creatine phosphate


d. proteins


e. lactate

c. creatine phosphate

End product of glycolysis in anaerobically exercising skeletal muscle:


a. free fatty acids


b. glycogen


c. creatine phosphate


d. proteins


e. lactate

e. lactate

Senses changes in tension generated by skeletal muscle:


a. intrafusal fibers


b. extrafusal fibers


c. Golgi tendon organ


d. prmary annulospiral endings


e. secondary flower-spray endings

c. Golgi tendon organ

Ordinary muscle fiber able to generate contraction along its entire length


a. intrafusal fibers


b. extrafusal fibers


c. Golgi tendon organ


d. prmary annulospiral endings


e. secondary flower-spray endings

b. extrafusal fibers